Evaluation of Possible Role of Dendritic Cells in Various Lupus Nephritis

Document Type: Original Research

Authors

1 Dept. of Pathology, Afzalipour Medical School, Nephrology-Physiology Research Center, Kerman, Iran

2 Dept. of Pharmacology, Afzalipour Medical School, Nephrology-Physiology Research Center, Kerman, Iran

3 Dept. of Nephrology, Afzalipour Medical School, Nephrology-Physiology Research Center, Kerman, Iran

Abstract

Background & Objectives: Chronicity of lupus nephritis (LN) should be considered for interaction of cell mediated immunity (CMI) and dendritic cells in glomeruli and tubulointerstitial areas. In this study establishment of immunohistopathological changes of dendritic cells and other immune effector cells in lupus nephritis comparing with non-lupus nephritis was performed.
Materials & Methods: Renal needle biopsies of 35 cases of lupus nephritis and 35 cases of other causes of persistent proteinuria were compared for immunohistochemistry for plasmacytoid (CD123), myeloid (CD11c) dendritic cells, macrophages (CD68) and lymphocytes (CD4) markers. Statistical analysis of the data was performed using Spearman and Pearson correlation or ANOVA and t- student test (P < 0.05).
Results:Significant difference of glomerular and interstitial spaces for presence of myeloid-plasmacytoid dendritic cells and lymphocytes except macrophages between lupus nephritis and other causes of persistent proteinuria have found (P<0.001). Positive significant correlations were observed between glomerular presentation of myeloid dendritic cells and chronicity index but not with other markers in lupus nephritis (P <0.001). Statistically significant changes between presence of all markers and activity index were not observed (P >0.05).
Conclusions: The myeloid dendritic cells might have synergistic role with other immune cells in pathogenesis and progression or chronicity of lupus nephritis.

Keywords


  1. Kanta H, Mohan C. Three checkpoints in lupus development: central tolerance in adaptive immunity, peripheral amplification by innate immunity and end-organ inflammation. GenesImmun 2009;10(5):390–6.
  2. Lewis EJ, Schwartz MM. Pathology of lupus nephritis. Lupus 2005;14(1):31–8.
  3. Schmitt N, Morita R, Bourdery L, Bentebibel SE, Zurawski SM, Banchereau J, et al. Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity 2009; 31(1):158–69.
  4. Tucci M,Quaterato C,Lombardi L, Pellegrino C, Dammacco F, Silvestris F. Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis. Arthritis Rheum 2008;58:251-62.                     
  5. Kirou KA, Lee C, George S, Louca K, Peterson MGE, Crow MK. Activation of the interferon-αpathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum 2005;52(5):1491–503.
  6. Hochheiser K, Tittle A, Kurts C. Kidney dendritic cells in acut and chronic renal disease. Int J Exp Pathol 2011; 92(3):193-201.
  7. Weening JJ, D’Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol 2004;15(2):241–50.
  8. Segerer S, Heller F, Lindenmeyer MT, Schmid H, Cohen CD, Draganovici D, et al. Compartment specific expression of dendritic cell markers in human glomerulonephritis. Kidney Int 2008;74(1): 37–46.
  9. Fiore N, Castellano G, Blasi A, Capobianco C, Loverre A, Montinaro V, et al. Immature myeloid and plasmacytoid dendritic cells infiltrate renal tubulointerstitium in patients with lupus nephritis. Mol Immunol 2008;45(1):259–65.
  10. Woltman AM, De Fijter JW, Zuidwijk K, Vlug AG, Bajema IM, van der Kooij SW, et al. Quantification of dendritic cell subsets in human renal tissue under normal and pathological conditions. Kidney Int 2007;71(10):1001–8.
  11. Tucci M,Ciaverella S,Stripolli S, Dammacco F, Silvestris F. Oversecretion of cytokines and chemokines in lupus nephritis is regulated by intraparenchymal dendritic cells.Ann NYAcad Sci 2009;1173:449-57.                 
  12. Lewis EJ, Schwartz MM, Korbet SM, Mao DT. Lupus Nephritis. Kidney Int 2007;71(10):1001-8.                      
  13. Alexopoulos E, Seron D, Hartley RB, Cameron JS. Lupus nephritis: correlation of interstitial cells with glomerular function. Kidney Int 1990;37(1):100–9. 
  14. Datta SK. Major peptide autoepitopes for nucleosome-centered T and B cell interaction in human and murine lupus. Ann NY Acad Sci 2003;987:79–90.
  15. Chan RWY, Lai FMM, Li EKM, Tam LS, Chow KM, Lai KB, et al. Intrarenal cytokine gene expression in lupus nephritis. Ann Rheum Dis 2007; 66(7):886–92.
  16. Uhm WS, Na K, Song GW, Jung SS, Lee T, Park MH, et al. Cytokine balance in kidney tissue from lupus nephritis patients. Rheumatology (Oxford) 2003;42(8):935–8.
  17. Masutani K, Akahoshi M, Tsuruya K, Tokumoto M, Ninomiya T, Kohsaka T, et al. Predominance of Th1 immune response in diffuse proliferative lupus nephritis. Arthritis Rheum 2001;44(9):2097–106.
  18. Takahashi S, Fossati L, Iwamoto M, Merino R, Motta R, Kobayakawa T, et al. Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J Clin Invest 1996;97(7):1597–604.
  19. Shimizu S, Sugiyama N, Masutani K, Sadanaga A, Miyazaki Y, Inoue Y, et al. Membranous glomerulonephritis development with Th2-type immune deviations in MRL/lpr mice deficient for IL-27 receptor (WSX-1). J Immunol 2005;175(11):7185–92. 
  20. Kawasaki Y, Suzuki J, Sakai N, Isome M, Nozawa R, Tanji M, et al. Evaluation of T helper-1/-2 balance on the basis of IgG subclasses and serum cytokines in children with glomerulonephritis. Am J Kid Dis 2004;44(1):42–9.
  21. Yamada M, Yagita H, Inoue H, Takanashi T, Matsuda H, Munechika E, et al. Selective accumulation of CCR4+ T lymphocytes into renal tissue of patients with lupus nephritis. Arthritis Rheum 2002; 46(3):735–40.
  22. Nguyen V, Cudrici C, Zernetkina V, Niculescu F, Rus H, Drachenberg C, et al. TRAIL, DR4 and DR5 are upregulated in kidneys from patients with lupus nephritis and exert proliferative and proinflammatory effects. Clin Immunol 2009;132(1):32–42.
  23. Renaudineau Y, Pers JO, Bendaoud B, Jamin C, Youinou P. Dysfunctional B cells in systemic lupus erythematosus. Autoimmun Rev 2004;3(7-8):516–23.
  24. Tsubata T. B cell abnormality and autoimmune  disorders. Autoimmunity 2005;38(5):331–7.
  25. Dolff S, Wilde B, Patschan S, Dürig J, Specker C, Philipp T, et al. Peripheral circulating activated B-cell populations are associated with nephritis and disease activity in patients with systemic lupus erythematosus. Scand J Immunol 2007; 66(5): 584–90.
  26. Zhang HF, Lu S, Morrison SL, Tomlinson S. Targeting of functional antibody-decay-accelerating factor fusion proteins to a cell surface. J Biol Chem 2001;276(29):27290–5.
  27. Jacob N, Stohl W. Autoantibody-dependent and autoantibody-independent roles for B cells in systemic lupus erythematosus: past, present, and future. Autoimmunity 2010; 43(1):84–97.
  28. Chang A, Henderson SG, Brandt D, Liu N, Guttikonda R, Hsieh C, et al. In situ B Cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J Immunol 2011; 186(3): 1849–60.
  29. Shankland SJ, Eitner F, Hudkins KL, Goodpaster T, D’Agati V, Alpers CE. Differential expression of cyclin-dependent kinase inhibitors in human glomerular disease: role in podocyte proliferation and maturation. Kidney Int 2000;58(2):674–83.
  30. Segerer S, Nelson PJ, Schlöndorff D. Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol 2000;11(1):152–76.
  31. Park MH, D’Agati V, Appel GB, Pirani CL. Tubulointerstitial disease in lupus nephritis: relationship to immune deposits, interstitial inflammation, glomerular changes, renal function, and prognosis. Nephron 1986;44(4):309–19.
  32. Hunter MG, Hurwitz S, Bellamy COC, Duffield JS. Quantitative morphometry of lupus nephritis: the significance of collagen, tubular space, and inflammatory infiltrate. Kidney Int 2005; 67(1):94–102.