Document Type: Original Research

Authors

1 Microbial Biotechnology Research Center, Iran University of Medical Science, Tehran, Iran

2 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

3 Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran

Abstract

Background & Objective: Persister cells are defined as a subpopulation of bacteria that are capable of reducing their metabolism and switching to dormancy in stress conditions. Persister cells formation has been attributed to numerous mechanisms, including stringent response and Toxin-Antitoxin (TA) systems. This study aimed to investigate the hypothetical role of TA systems in persister cells formation of Brucella strains by evaluating toxins of type II TA systems (RelE, Fic, Brn T, cogT) expression.
Methods: Brucella strains treated with a lethal dose of gentamicin and ampicillin and to determine the number of surviving cells, bacterial colonies were counted at different time intervals. The role of TA systems in persister cell formation was then determined by toxin expression levels using qRT- PCR method.
Results: Our results showed the viability of persister cells after 7 h. The results of relative qRT- PCR showed higher levels of toxin gene expression due to stress conditions, suggesting the possible role of TA systems in persister cells formation and antibiotics tolerance.
Conclusion: The results of this study showed that considering the importance of persistence and the tolerance to antibiotics, further studies on persister cells formation and related genes such as the TA system genes in Brucella strains might help us to identify the precise mechanisms leading to persister cells formation.

Keywords

Main Subjects

  1. Probert WS, Schrader KN, Khuong NY, Bystrom SL, Graves MHJJocm. Real-time multiplex PCR assay for detection of Brucella spp., B. abortus, and B. melitensis. 2004;42(3):1290-3. [DOI:10.1128/JCM.42.3.1290-1293.2004] [PMID] [PMCID]
  2. Eskandari-Nasab E, Moghadampour M, Hasani SS, Hadadi-fishani M, Mirghanizadeh-Bafghi SA, Asadi-Saghandi A, et al. Relationship between gamma-interferon gene polymorphisms and susceptibility to brucellosis infection. Microbiol Immunol. 2013;57(11):785-91. [DOI:10.1111/1348-0421.12093] [PMID]
  3. López-Goñi I, García-Yoldi D, Marín CM, de Miguel MJ, Barquero-Calvo E, Guzmán-Verri C, et al. New Bruce-ladder multiplex PCR assay for the biovar typing of Brucella suis and the discrimination of Brucella suis and Brucella canis. Veterinary microbiology. 2011;154(1-2):152-5. [DOI:10.1016/j.vetmic.2011.06.035] [PMID]
  4. Jazi FM, Mirnejad R, Piranfar V, Mozafari NA, Salehi TZ, Khormali M, et al. Real-time PCR and high-resolution melt analysis methods for detection of pathogenic species of Brucella. 2017;41(6):325-31. [DOI:10.1515/labmed-2017-0030]
  5. Irajian GR, Jazi FM, Mirnejad R, Piranfar VJIjop. Species-specific PCR for the diagnosis and determination of antibiotic susceptibilities of Brucella strains isolated from Tehran, Iran. 2016;11(3):238.
  6. Kang S-I, Her M, Kim JW, Kim J-Y, Ko KY, Ha Y-M, et al. Advanced multiplex PCR assay for differentiation of Brucella species. 2011;77(18):6726-8. [DOI:10.1128/AEM.00581-11] [PMID] [PMCID]
  7. Mirkalantari S, Zarnani A-H, Nazari M, Irajian GR, Amirmozafari NJAocm, antimicrobials. Brucella melitensis VirB12 recombinant protein is a potential marker for serodiagnosis of human brucellosis. 2017;16(1):8. [DOI:10.1186/s12941-017-0182-4] [PMID] [PMCID]
  8. khadivi r, imani r, salehi s, dehghan m. The incidence rate of chronic brucellosis following one-year antibiotic therapy in Koohrang district of Chaharmahal & Bakhtyari province %J Journal of Shahrekord Uuniversity of Medical Sciences. 2006;8(3):54-61.
  9. Kwan BW, Valenta JA, Benedik MJ, Wood TKJAa, chemotherapy. Arrested protein synthesis increases persister-like cell formation. 2013;57(3):1468-73. [DOI:10.1128/AAC.02135-12] [PMID] [PMCID]
  10. Gallo SW, Donamore BK, Pagnussatti VE, Ferreira CAS, de Oliveira SDJFm. Effects of meropenem exposure in persister cells of Acinetobacter calcoaceticus-baumannii. 2017;12(2):131-40. [DOI:10.2217/fmb-2016-0118] [PMID]
  11. Bigger J. Treatment of Staphyloeoeeal Infections with Penicillin by Intermittent Sterilisation. Lancet. 1944:497-500. [DOI:10.1016/S0140-6736(00)74210-3]
  12. Fauvart M, De Groote VN, Michiels JJJomm. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. 2011;60(6):699-709. [DOI:10.1099/jmm.0.030932-0] [PMID]
  13. Shah D, Zhang Z, Khodursky AB, Kaldalu N, Kurg K, Lewis KJBm. Persisters: a distinct physiological state of E. coli. 2006;6(1):53. [DOI:10.1186/1471-2180-6-53] [PMID] [PMCID]
  14. Kędzierska B, Hayes FJM. Emerging roles of toxin-antitoxin modules in bacterial pathogenesis. 2016;21(6):790. [DOI:10.3390/molecules21060790] [PMID] [PMCID]
  15. Mohammadzadeh R, Shivaee A, Ohadi E, Kalani BSJIJoPR, Therapeutics. In Silico Insight into the Dominant Type II Toxin-Antitoxin Systems and Clp Proteases in Listeria monocytogenes and Designation of Derived Peptides as a Novel Approach to Interfere with this System. 2019. [DOI:10.1007/s10989-019-09868-6]
  16. Masuda H, Inouye M. Toxins of prokaryotic toxin-antitoxin systems with sequence-specific endoribonuclease activity. Toxins. 2017;9(4):140. [DOI:10.3390/toxins9040140] [PMID] [PMCID]
  17. Yang QE, Walsh TRJFmr. Toxin-antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. 2017;41(3):343-53. [DOI:10.1093/femsre/fux006] [PMID] [PMCID]
  18. Muthuramalingam M, White J, Bourne CJT. Toxin-antitoxin modules are pliable switches activated by multiple protease pathways. 2016;8(7):214. [DOI:10.3390/toxins8070214] [PMID] [PMCID]
  19. Hashemifar I, Masjedian Jazi F, Yadegar A, Amirmozafari N. Prevalence of proline racemase/ hydroxyproline epimerase gene in human brucella isolates in Iran. Med J Islam Repub Iran. 2017;31:57. [DOI:10.14196/mjiri.31.57] [PMID] [PMCID]
  20. Trott DJ, Abraham S, Adler B. Antimicrobial Resistance in Leptospira, Brucella, and Other Rarely Investigated Veterinary and Zoonotic Pathogens. Microbiol Spectr. 2018;6(4). [DOI:10.1128/microbiolspec.ARBA-0029-2017]
  21. Megaw J, Gilmore BF. Archaeal Persisters: Persister Cell Formation as a Stress Response in Haloferax volcanii. Front Microbiol. 2017;8:1589. [DOI:10.3389/fmicb.2017.01589] [PMID] [PMCID]
  22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. [DOI:10.1006/meth.2001.1262] [PMID]
  23. Lewis K. Persister cells and the riddle of biofilm survival. Biochemistry (Moscow). 2005;70(2):267-74. [DOI:10.1007/s10541-005-0111-6] [PMID]
  24. Ren H, He X, Zou X, Wang G, Li S, Wu Y. Gradual increase in antibiotic concentration affects persistence of Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy. 2015;70(12):3267-72. [DOI:10.1093/jac/dkv251] [PMID]
  25. Gerdes K, Rasmussen PB, Molin S. Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proceedings of the National Academy of Sciences. 1986;83(10):3116-20. [DOI:10.1073/pnas.83.10.3116] [PMID] [PMCID]
  26. Page R, Peti WJNcb. Toxin-antitoxin systems in bacterial growth arrest and persistence. 2016;12(4):208. [DOI:10.1038/nchembio.2044] [PMID]
  27. Muthuramalingam M, White J, Bourne C. Toxin-antitoxin modules are pliable switches activated by multiple protease pathways. Toxins. 2016;8(7):214. [DOI:10.3390/toxins8070214] [PMID] [PMCID]
  28. Holden DW, Errington J. Type II Toxin-Antitoxin Systems and Persister Cells. MBio. 2018;9(5). [DOI:10.1128/mBio.01574-18] [PMID] [PMCID]
  29. Moyed HS, Bertrand KPJJob. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. 1983;155(2):768-75. [DOI:10.1128/JB.155.2.768-775.1983] [PMID] [PMCID]
  30. Germain E, Roghanian M, Gerdes K, Maisonneuve E. Stochastic induction of persister cells by HipA through (p) ppGpp-mediated activation of mRNA endonucleases. Proceedings of the National Academy of Sciences. 2015;112(16):5171-6. [DOI:10.1073/pnas.1423536112] [PMID] [PMCID]
  31. Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science. 2009;323(5912):396-401. [DOI:10.1126/science.1163806] [PMID] [PMCID]
  32. Vázquez-Laslop N, Lee H, Neyfakh AAJJob. Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. 2006;188(10):3494-7. [DOI:10.1128/JB.188.10.3494-3497.2006] [PMID] [PMCID]
  33. Butt A, Higman VA, Williams C, Crump MP, Hemsley CM, Harmer N, et al. The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochem J. 2014;459(2):333-44. [DOI:10.1042/BJ20140073] [PMID] [PMCID]