Document Type : Original Research

Authors

Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour Medical School, Kerman University of Medical Sciences, Kerman, Iran

Abstract

Background & Objective: Long noncoding RNAs (lncRNAs) as challenging molecules are more known compared to those in the  last decade. These transcripts have been validated for carcinogenesis in many types of tissue. Functions of lncRNAs in cancer induction include cell cycle, epithelial to mesenchymal transition progression, apoptosis inhibition, cell migration, and invasion stimulation . LncRNA small nucleolar host (SNHG6) have been proven as an oncogenic transcript in many types of cancer.
Methods: RNA extraction was performed for 47 breast specimens in patients with cancer  and cDNAs were synthesized. Relative expression of target variants was determined by qPCR and calculated based on the ΔΔCt method. SNHG6 203 was cloned into pcDNA 3.1+ vector for overexpression in MCF7 (HER2-) and SK-BR3 (HER2+) cells. The cell cycle progression of transfected cells was assessed by flow cytometry. Cell migration ability of transfected cells was evaluated by the scratch method and Image J software. Finally, cell viability was assessed by the MTT method.
Results: Among four splice variants of SNHG6 (202, 203, 204, and 207), SNHG6 203 was proved as an overexpressed splice variant in breast cancer tumors. This transcript was expressed in HER2-negative breast tumors more frequently than in the positive ones. Overexpression of this variant in target cells resulted in cell cycle progression of MCF7 as HER2-negative cells. Moreover, the overexpression of SNHG6 203 led to a lower migration ability of MCF7 cells and a non-significant reduction of their viability as HER2-negative breast cancer cells.

Keywords

Main Subjects

  1. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904-14. [DOI:10.1016/j.molcel.2011.08.018] [PMID] [PMCID]
  2. Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21 (5):542-51. [DOI:10.1038/s41556-019-0311-8] [PMID]
  3. Zampetaki A, Albrecht A, Steinhofel K. Long Non-coding RNA Structure and Function: Is There a Link? Front Physiol. 2018;9(1201):1201. [DOI:10.3389/fphys.2018.01201] [PMID] [PMCID]
  4. Mathews DH, Turner DH, Zuker M. RNA secondary structure prediction. Curr Protoc Nucleic Acid Chem. 2007;Chapter 11:Unit 11 2. [DOI:10.1002/0471142700.nc1102s28] [PMID] [PMCID]
  5. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253-61. [DOI:10.1038/nm.3981] [PMID]
  6. Mozdarani H, Ezzatizadeh V, Rahbar Parvaneh R. The emerging role of the long noncoding RNA HOTAIR in breast cancer development and treatment. J Transl Med. 2020;18(1):152. [DOI:10.1186/s12967-020-02320-0] [PMID] [PMCID]
  7. Xie H, Liao X, Chen Z, Fang Y, He A, Zhong Y, et al. LncRNA MALAT1 Inhibits Apoptosis and Promotes Invasion by Antagonizing miR-125b in Bladder Cancer Cells. J Cancer. 2017;8(18):3803-11. [DOI:10.7150/jca.21228] [PMID] [PMCID]
  8. Lv P, Qiu X, Gu Y, Yang X, Xu X, Yang Y. Long noncoding RNA SNHG6 enhances cell proliferation, migration and invasion by regulating miR-26a-5p/MAPK6 in breast cancer. Biomed Pharmacother. 2019;110:294-301. [DOI:10.1016/j.biopha.2018.11.016] [PMID]
  9. Cai G, Zhu Q, Yuan L, Lan Q. LncRNA SNHG6 acts as a prognostic factor to regulate cell proliferation in glioma through targeting p21. Biomed Pharmacother. 2018;102:452-7. [DOI:10.1016/j.biopha.2018.03.083] [PMID]

 

  1. Yan K, Tian J, Shi W, Xia H, Zhu Y. LncRNA SNHG6 is Associated with Poor Prognosis of Gastric Cancer and Promotes Cell Proliferation and EMT through Epigenetically Silencing p27 and Sponging miR-101-3p. Cell Physiol Biochem. 2017;42(3):999-1012. [DOI:10.1159/000478682] [PMID]
  2. Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An Emerging Class of Long Non-coding RNA With Oncogenic Role Arises From the snoRNA Host Genes. Front Oncol. 2020;10(389):389. [PMID] [PMCID] [DOI:10.3389/fonc.2020.00389]
  3. Holley C, Elliot B, Ho HT. Modification of mRNA by snoRNA‐guided 2′‐ FASEB J. 2019;33(S1):220.2-.2. [PMID] [DOI:10.1096/fasebj.2019.33.1_supplement.543.10]
  4. Stepanov GA, Filippova JA, Komissarov AB, Kuligina EV, Richter VA, Semenov DV. Regulatory role of small nucleolar RNAs in human diseases. BioMed Res Int. 2015;2015:206849. [DOI:10.1155/2015/206849] [PMID] [PMCID]
  5. Popis MC, Blanco S, Frye M. Posttranscriptional methylation of transfer and ribosomal RNA in stress response pathways, cell differentiation, and cancer. Curr Opin Oncol. 2016;28(1):65-71. [DOI:10.1097/CCO.0000000000000252] [PMID] [PMCID]
  6. Jafari-Oliayi A, Asadi MH. SNHG6 is upregulated in primary breast cancers and promotes cell cycle progression in breast cancer-derived cell lines. Cell Oncol. 2019;42(2):211-21. [DOI:10.1007/s13402-019-00422-6] [PMID]
  7. Meng Q, Yang BY, Liu B, Yang JX, Sun Y. Long noncoding RNA SNHG6 promotes glioma tumorigenesis by sponging miR-101-3p. Int J Biol Markers. 2018;33(2):148-55. [DOI:10.1177/1724600817747524] [PMID]
  8. Yan Y, Chen Z, Xiao Y, Wang X, Qian K. Long noncoding RNA SNHG6 is upregulated in prostate cancer and predicts poor prognosis. Mol Biol Rep. 2019;46(3):2771-8. [DOI:10.1007/s11033-019-04723-9] [PMID]
  9. Geng H, Li S, Xu M. Long Noncoding RNA SNHG6 Functions as an Oncogene in Non-Small Cell Lung Cancer via Modulating ETS1 Signaling. Onco Targets Ther. 2020;13:921-30. [DOI:10.2147/OTT.S235336] [PMID] [PMCID]
  10. Wu Y, Deng Y, Guo Q, Zhu J, Cao L, Guo X, et al. Long noncoding RNA SNHG6 promotes cell proliferation and migration through sponging miR-4465 in ovarian clear cell carcinoma. J Cell Mol Med. 2019;23(8):5025-36. [DOI:10.1111/jcmm.14359] [PMID] [PMCID]
  11. Wang HS, Zhang W, Zhu HL, Li QP, Miao L. Long noncoding RNA SNHG6 mainly functions as a competing endogenous RNA in human tumors. Cancer Cell Int. 2020;20:219. [PMCID] [DOI:10.1186/s12935-020-01303-x] [PMID]
  12. Xu M, Chen X, Lin K, Zeng K, Liu X, Xu X, et al. lncRNA SNHG6 regulates EZH2 expression by sponging miR-26a/b and miR-214 in colorectal cancer. J Hematol Oncol. 2019;12(1):3. [DOI:10.1186/s13045-018-0690-5] [PMID] [PMCID]
  13. Wang H, Wang L, Tang L, Luo J, Ji H, Zhang W, et al. Long noncoding RNA SNHG6 promotes proliferation and angiogenesis of cholangio-carcinoma cells through sponging miR-101-3p and activation of E2F8. J Cancer. 2020;11(10):3002-12. [DOI:10.7150/jca.40592] [PMID] [PMCID]
  14. Cao C, Zhang T, Zhang D, Xie L, Zou X, Lei L, et al. The long noncoding RNA, SNHG6-003, functions as a competing endogenous RNA to promote the progression of hepatocellular carcinoma. Oncogene. 2017;36(8):1112-22. [DOI:10.1038/onc.2016.278] [PMID]
  15. Jafari Oliayi A, Asadi MH. SNHG6 203 and SNHG6 201 Transcripts Can be Used as Contributory Factors for a Well-Timed Prognosis and Diagnosis of Colorectal Cancer. J Kerman Uni Med Sci. 2018;25(6):483-92.
  16. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101-8. [DOI:10.1038/nprot.2008.73] [PMID]
  17. Alipoor FJ, Asadi MH, Torkzadeh-Mahani M. MIAT lncRNA is overexpressed in breast cancer and its inhibition triggers senescence and G1 arrest in MCF7 cell line. J Cell Biochem. 2018;119 (8):6470-81. [DOI:10.1002/jcb.26678] [PMID]
  18. Keshavarz M, Asadi MH. Long noncoding RNA ES1 controls the proliferation of breast cancer cells by regulating the Oct4/Sox2/miR-302 axis. FEBS J. 2019;286(13):2611-23. [DOI:10.1111/febs.14825] [PMID]
  19. Lan Z, Yao X, Sun K, Li A, Liu S, Wang X. The Interaction Between lncRNA SNHG6 and hnRNPA1 Contributes to the Growth of Colorectal Cancer by Enhancing Aerobic Glycolysis Through the Regulation of Alternative Splicing of PKM. Front Oncol. 2020;10(363):363. [PMID] [PMCID]              [DOI:10.3389/fonc.2020.00363]
  20. Teppan J, Barth DA, Prinz F, Jonas K, Pichler M, Klec C. Involvement of Long Non-Coding RNAs (lncRNAs) in Tumor Angiogenesis. Noncoding RNA. 2020;6(4):42. [DOI:10.3390/ncrna6040042] [PMID] [PMCID]
  21. El Marabti E, Younis I. The Cancer Spliceome: Reprograming of Alternative Splicing in Cancer. Front Mol Biosci. 2018;5(80):80. [PMID] [PMCID] [DOI:10.3389/fmolb.2018.00080]
  22. Lissoni P, Messina G, Rovelli F, Brivio F, Fumagalli L, Villa S, et al. HER2 expression in breast cancer: correlation with endocrine function and psychological status in operable and metastatic breast cancer. In Vivo. 2009;23(6):987-9.
  23. Huang F, Shi Q, Li Y, Xu L, Xu C, Chen F, et al. HER2/EGFR-AKT Signaling Switches TGFbeta from Inhibiting Cell Proliferation to Promoting Cell Migration in Breast Cancer. Cancer Res. 2018;78(21):6073-85. [DOI:10.1158/0008-5472.CAN-18-0136] [PMID]
  24. Liu YL, Chou CK, Kim M, Vasisht R, Kuo YA, Ang P, et al. Assessing metastatic potential of breast cancer cells based on EGFR dynamics. Sci Rep. 2019;9(1):3395. [DOI:10.1038/s41598-018-37625-0] [PMID] [PMCID]
  25. Oberst M, Anders J, Xie B, Singh B, Ossandon M, Johnson M, et al. Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo. Am J Pathol. 2001;158 (4): 1301-11. [DOI:10.1016/S0002-9440(10)64081-3]
  26. Xiao L, Rao JN, Cao S, Liu L, Chung HK, Zhang Y, et al. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins. Mol Biol Cell. 2016;27(4):617-26. [DOI:10.1091/mbc.E15-10-0703] [PMID] [PMCID]
  27. Zhao XY, Lin JD. Long Noncoding RNAs: A New Regulatory Code in Metabolic Control. Trends Biochem Sci. 2015;40(10):586-96. [PMCID] [DOI:10.1016/j.tibs.2015.08.002] [PMID]
  28. Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, et al. The LINK-A lncRNA activates normoxic HIF1alpha signalling in triple-negative breast cancer. Nat Cell Biol. 2016;18(2):213-24. [DOI:10.1038/ncb3295] [PMID] [PMCID]
  29. Ottaviani S, de Giorgio A, Harding V, Stebbing J, Castellano L. Noncoding RNAs and the control of hormonal signaling via nuclear receptor regulation. J Mol Endocrinol. 2014;53(2):R61-70. [DOI:10.1530/JME-14-0134] [PMID]
  30. Boone DN, Warburton A, Som S, Lee AV. SNHG7 is a lncRNA oncogene controlled by Insulin-like Growth Factor signaling through a negative feedback loop to tightly regulate proliferation. Sci Rep. 2020;10(1):8583. [DOI:10.1038/s41598-020-65109-7] [PMID] [PMCID]