Document Type : Original Research

Authors

1 Department of Microbiology, Faculty of Medicine. Shahed University, Tehran, Iran

2 Molecular Microbiology Research Center (MMRC), Faculty of Medicine, Shahed University, Tehran, Iran

Abstract

Background & Objective: The ability of Pseudomonas aeruginosa to form biofilm has an important role in establishment of chronic phase of infections. Biofilm formation can be affected by antibiotics sub-MIC concentrations. The principal aim of the present study was to evaluate the effect of gentamicin at sub-MIC concentrations on biofilm formation in 100 Pseudomonas aeruginosa clinical isolates.
Methods: Determination of minimal inhibitory concentration of gentamicin for clinical isolates was done using micro broth dilution method. The amount of biofilm formation in the treated and untreated isolates with gentamicin sub-MIC (1/2&1/4MIC) concentrations was evaluated using microtitre plate assay. pelA and pslA genes were detected in clinical isolates by PCR method.
Results: 99% of clinical isolates were biofilm producer. Different changes in amount
of biofilm formation were observed in the treated clinical isolates with sub-MIC concentrations of gentamicin. Two dominant changes were observed in 80% of clinical isolates. These concentrations had inhibitory effect on biofilm formation in 46.4% of isolates and caused a significant decrease in its amount. While in 31.3% of the isolates, the biofilm formation was significantly increased. The frequency of pelA and pslA genes among clinical isolates was 100%. 
Conclusion: gentamicin sub-MIC concentrations cause different changes on biofilm formation of Pseudomonas aeruginosa clinical isolates. Therefore, further studies are needed for discovering new treatment strategies and using sub-MIC concentrations of the antibiotic in prevention and treatment of Pseudomonas aeruginosa infections. 

Keywords

Main Subjects

Copyright © 2021. This is an open-access article distributed under the terms of the Creative Commons Attribution- 4.0 International License which permits Share, copy and redistribution of the material in any medium or format or adapt, remix, transform, and build upon the material for any purpose, even commercially.

  1. Skariyachan S, Sridhar VS, Packirisamy S, Kumargowda ST, Challapilli SB. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiol (Praha). 2018;63(4):413-32. [DOI:10.1007/s12223-018-0585-4] [PMID]
  2. Kazemi Moghaddam E, Owlia P, Jahangiri A, Rasooli I, Rahbar MR, Aghajani M. Conserved OprF as a Selective Immunogen against Pseudomonas aeruginosa. Iran J Pathol. 2017;12(2):165-70. [DOI:10.30699/ijp.2017.24875] [PMID] [PMCID]
  3. Hoseinpoor Mohammad Abadi Z, Mokhtari A, Ebrahimi Kahrizsangi A. Evaluation of the Effect of a Number of Commercial Disinfectants on Pseudomonas aeruginosa Isolates Obtained from Human Infection Cases. Iranian Journal of Medical Microbiology. 2020;14(2):138-53. [DOI:10.30699/ijmm.14.2.138]
  4. Erdal B, Yalinay M, Elmas C, Yazici GN. [Investigation of Pseudomonas aeruginosa Biofilm Formation and Quorum Sensing Genes in Piperacillin/Tazobactam and Ciprofloxacin Sub-minimal Inhibitory Concentrations]. Mikrobiyol Bul. 2020;54(4):547-58. [DOI:10.5578/mb.70087] [PMID]
  5. Hadadi-Fishani M, Khaledi A, Fatemi-Nasab ZS. Correlation between biofilm formation and antibiotic resistance in Pseudomonas aeruginosa: a meta-analysis. Infez Med. 2020;28(1):47-54.
  6. Thi MTT, Wibowo D, Rehm BHA. Pseudomonas aeruginosa Biofilms. Int J Mol Sci. 2020;21(22):8671. [DOI:10.3390/ijms21228671] [PMID] [PMCID]
  7. Shi N, Gao Y, Yin D, Song Y, Kang J, Li X, et al. The effect of the sub-minimal inhibitory concentration and the concentrations within resistant mutation window of ciprofloxacin on MIC, swimming motility and biofilm formation of Pseudomonas aeruginosa. Microb Pathog. 2019;137:103765. [DOI:10.1016/j.micpath.2019.103765] [PMID]
  8. Azimi S, Kafil HS, Baghi HB, Shokrian S, Najaf K, Asgharzadeh M, et al. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. GMS Hyg Infect Control. 2016;11:Doc04.
  9. Ochoa SA, Cruz-Cordova A, Rodea GE, Cazares-Dominguez V, Escalona G, Arellano-Galindo J, et al. Phenotypic characterization of multidrug-resistant Pseudomonas aeruginosa strains isolated from pediatric patients associated to biofilm formation. Microbiol Res. 2015;172:68-78. [DOI:10.1016/j.micres.2014.11.005] [PMID]
  10. Lee K, Yoon SS. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness. J Microbiol Biotechnol. 2017;27(6):1053-64. [DOI:10.4014/jmb.1611.11056] [PMID]
  11. Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother. 2004;48(4):1175-87. [DOI:10.1128/AAC.48.4.1175-1187.2004] [PMID] [PMCID]
  12. Bahram A, Baghchesaraie H, Faghihi MHO. Effect of different sub MIC concentrations of penicillin, vancomycin and ceftazidime on morphology and some biochemical properties of Staphylococcus aureus and Pseudomonas aeruginosa isolates. Iranian Journal of Microbiology. 1970;1(1).
  13. Hemati S, Sadeghifard N, Ghafurian S, Maleki F, Mahdavi Z, Hassanvand A, et al. The association of biofilm formation and sub-minimal inhibitory concentrations of antimicrobial agents. 2016.
  14. Roudashti S, Zeighami H, Mirshahabi H, Bahari S, Soltani A, Haghi F. Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World J Microbiol Biotechnol. 2017;33(3):50. [DOI:10.1007/s11274-016-2195-0] [PMID]
  15. Garey KW, Vo QP, Lewis RE, Saengcharoen W, LaRocco MT, Tam VH. Increased bacterial adherence and biomass in Pseudomonas aeruginosa bacteria exposed to clarithromycin. Diagn Microbiol Infect Dis. 2009;63(1):81-6. [DOI:10.1016/j.diagmicrobio.2008.09.007] [PMID]
  16. Hemati S, Kouhsari E, Sadeghifard N, Maleki A, Omidi N, Mahdavi Z, et al. Sub-minimum inhibitory concentrations of biocides induced biofilm formation in Pseudomonas aeruginosa. New Microbes New Infect. 2020;38:100794. [DOI:10.1016/j.nmni.2020.100794] [PMID] [PMCID]
  17. Khan F, Lee JW, Javaid A, Park SK, Kim YM. Inhibition of biofilm and virulence properties of Pseudomonas aeruginosa by sub-inhibitory concentrations of aminoglycosides. Microb Pathog. 2020;146:104249. [DOI:10.1016/j.micpath.2020.104249] [PMID]
  18. Hoffman LR, D'Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 2005;436(7054):1171-5. [DOI:10.1038/nature03912] [PMID]
  19. Owlia P, Nosrati R, Alaghehbandan R, Lari AR. Antimicrobial susceptibility differences among mucoid and non-mucoid Pseudomonas aeruginosa isolates. GMS Hyg Infect Control. 2014;9(2):Doc13.
  20. Ghadaksaz A, Fooladi AAI, Mahmoodzadeh Hosseini H, Amin M. The prevalence of some Pseudomonas virulence genes related to biofilm formation and alginate production among clinical isolates. Journal of Applied Biomedicine. 2015;13(1):61-8. [DOI:10.1016/j.jab.2014.05.002]
  21. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 21st Informational Supplement. M100-S21. CLSI Wayne, PA; 2011.
  22. Zmantar T, Kouidhi B, Miladi H, Mahdouani K, Bakhrouf A. A microtiter plate assay for Staphylococcus aureus biofilm quantification at various pH levels and hydrogen peroxide supplementation. New Microbiol. 2010;33(2):137-45.
  23. Saidi N, Owlia P, Marashi SMA, Saderi H. Inhibitory effect of probiotic yeast Saccharomyces cerevisiae on biofilm formation and expression of alpha-hemolysin and enterotoxin A genes of Staphylococcus aureus. Iran J Microbiol. 2019;11(3):246-54. [DOI:10.18502/ijm.v11i3.1331] [PMID] [PMCID]
  24. Harjai K, Khandwahaa RK, Mittal R, Yadav V, Gupta V, Sharma S. Effect of pH on production of virulence factors by biofilm cells of Pseudomonas aeruginosa. Folia Microbiol (Praha). 2005;50(2):99-102. [DOI:10.1007/BF02931455] [PMID]
  25. van 't Wout EF, van Schadewijk A, van Boxtel R, Dalton LE, Clarke HJ, Tommassen J, et al. Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells. PLoS Pathog. 2015;11(6):e1004946. [DOI:10.1371/journal.ppat.1004946] [PMID] [PMCID]
  26. Otani S, Hiramatsu K, Hashinaga K, Komiya K, Umeki K, Kishi K, et al. Sub-minimum inhibitory concentrations of ceftazidime inhibit Pseudomonas aeruginosa biofilm formation. J Infect Chemother. 2018;24(6):428-33. [DOI:10.1016/j.jiac.2018.01.007] [PMID]
  27. Ghadam P, Akhlaghi F, Ali AA. One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm. Iran J Basic Med Sci. 2017;20(5):467-73.
  28. Bala A, Kumar R, Harjai K. Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections. J Med Microbiol. 2011;60(Pt 3):300-6. [DOI:10.1099/jmm.0.025387-0] [PMID]
  29. Wannigama DL, Hurst C, Hongsing P, Pearson L, Saethang T, Chantaravisoot N, et al. A rapid and simple method for routine determination of antibiotic sensitivity to biofilm populations of Pseudomonas aeruginosa. Ann Clin Microbiol Antimicrob. 2020;19(1):8. [DOI:10.1186/s12941-020-00350-6] [PMID] [PMCID]
  30. Kaplan JB. Antibiotic-induced biofilm formation. Int J Artif Organs. 2011;34(9):737-51. [DOI:10.5301/ijao.5000027] [PMID]
  31. Bahador N, Shoja S, Faridi F, Dozandeh-Mobarrez B, Qeshmi FI, Javadpour S, et al. Molecular detection of virulence factors and biofilm formation in Pseudomonas aeruginosa obtained from different clinical specimens in Bandar Abbas. Iran J Microbiol. 2019;11(1):25-30. [DOI:10.18502/ijm.v11i1.701] [PMID] [PMCID]
  32. Pournajaf A, Razavi S, Irajian G, Ardebili A, Erfani Y, Solgi S, et al. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Infez Med. 2018;26(3):226-36.
  33. Majtan V, Hybenova D. Inhibition of Pseudomonas aeruginosa alginate expression by subinhibitory concentrations of antibiotics. Folia Microbiol (Praha). 1996;41(1):61-4. [DOI:10.1007/BF02816342] [PMID]
  34. Bruchmann J, Kirchen S, Schwartz T. Sub-inhibitory concentrations of antibiotics and wastewater influencing biofilm formation and gene expression of multi-resistant Pseudomonas aeruginosa wastewater isolates. Environ Sci Pollut Res Int. 2013;20(6):3539-49. [DOI:10.1007/s11356-013-1521-4] [PMID]
  35. Linares JF, Gustafsson I, Baquero F, Martinez JL. Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A. 2006;103(51):19484-9. [DOI:10.1073/pnas.0608949103] [PMID] [PMCID]