Relation between Resistance to Antipseudomonal β-Lactams and ampC and mexC Genes of Pseudomonas aeruginosa

Document Type: Original Research

Authors

1 Dept. of Microbiology, School of Medicine, Shahed University, Tehran, Iran

2 Molecular Microbiology Research Center, Shahed University, Tehran, Iran

3 Pars Advanced and Minimally Invasive Research Center, Iran University of Medical Sciences, Tehran, Iran

4 Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran

5 Dept. of Biostatistics and Epidemiology, Zanjan University of Medical Science, Zanjan, Iran

Abstract

Background: In order to select a better antibiotic choice for treatment of Pseudomonas aeruginosa infections, this study was conducted to determine the frequency of resistance to some antipseudomonal β-lactams in P. aeruginosa isolates from patients in Tehran, Iran. In addition, the relation between presence of genes known to be responsible for resistance to β-lactams (ampC, mexC1,2,and mexC3,4 genes) and resistance phenotype among P. aeroginosa isolates was evaluated.
Methods: P. aeruginosa
strains were isolated and identified by routine methods and PCR for oprL gene. Disk diffusion method was employed to determine the antimicrobial susceptibility pattern according to CLSI recommendations. PCR was used to detect the resistance genes. Results: Among 100 isolates of P. aeruginosa, 82% had ampC, 86% mexC1,2and 89% mexC3,4 genes and combinations of these genes were seen in most of isolates and only 3% of isolates had none of these genes. Resistance to mezlocillin, cefepime, ceftazidime and piperacillin/ tazobactam was seen in 46%, 41%, 36% and 29% of isolates, respectively. Significant relation (P value ≤0.05 by Chi-square or Fisher Exact test) was observed between the presence of ampC gene and resistance to all the studied β-lactams in this study. No relation was observedfor mexC genes,although many ofisolates containing these two genes were phenotypically resistant.  Conclusion: This study had shown for the first time, the presence of ampC and mexC genes in significant percent of clinical isolates of P. aeruginosa in Tehran, Iran, and relation between presence of ampC gene and resistance to β-lactams. 

Highlights

How to cite this article:
Rezaei F, Saderi H, Boroumandi S, Faghihzadeh S. Relation  between  Resistance  to  Antipseudomonal β-Lactams and ampC and mexC Genes of Pseudomonas aeruginosa. Iran J Pathol. 2016; 11(1):47-53.

Keywords

Main Subjects


  1. Morales E, Cots F, Sala M, Comas M, Belvis F, Riu M, et al. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. BMC Health Serv Res 2012; 12(1): 122.
  2. Satti L, Abbasi S, Qumar TA, Khan MS, Hashmi ZA. In Vitro Efficacy of Cefepime Against Multi-Drug Resistant Pseudomonas aeruginosa- An Alarming Situation in our Setup.Open Drug Resist J 2011; 1(1): 12-6.
  3. Tohidpour A, Najar Peerayeh S, Mehrabadi JF, Rezaei Yazdi H. Determination of the Efflux Pump-Mediated Resistance Prevalence in Pseudomonas aeruginosa, Using an Efflux Pump Inhibitor. Curr Microbiol 2009; 59(3): 352-5.
  4. Hancock REW, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updates 2000; 3(4): 247-55.
  5. Zaman GJR, Flens MJ, Van Leusden MR, De Haas M, Mulder HS, Lankelma J, et al. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc Natl Acad Sci 1994; 91(19): 8822-6.
  6. Lee A, Mao W, Warren MS, Mistry A, Hoshino K, Okumura R, et al. Interplay between Efflux Pumps May Provide Either Additive or Multiplicative Effects on Drug Resistance. J Bacteriol 2000; 182(11): 3142-50.
  7. Piddock LJ. Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria. Clin Microbiol Rev 2006; 19(2): 382-402.
  8. Ma D, Cook DN, Hearst JE, Nikaido H. Efflux pumps and drug resistance in gram-negative bacteria. Trends Microbiol 1994; 2(12): 489-93.
  9. Poole K. Multidrug Efflux Pumps and Antimicrobial Resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 2001; 3(2): 255-64.
  10. Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, et al. Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa: Novel Agents for Combination Therapy. Antimicrob Agents Chemother 2001; 45(1): 105-16.
  11. Johnson JM, Church GM. Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps. J Mol Biol 1999; 287(3): 695-715.
  12. Ozer B, Duran N, Onlen Y, Savas L. Efflux pump genes and antimicrobial resistance of Pseudomonas aeruginosa strains isolated from lower respiratory tract infections acquired in an intensive care unit. J Antibiot 2012; 65(1): 9-13.
  13. Phillips I. Identification Of Pseudomonas aeruginosa in the clinical laboratory.J Med Microbiol 1969; 2: 9-16.
  14. De Vos D, Lim Jr A, Pirnay JP, Struelens M, Vandenvelde C, Duinslaeger L, et al. Direct detection and identification of Pseudomonas aeruginosa in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes, oprI and oprL. J Clin Microbiol 1997; 35(6): 1295-9.
  15. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-third Informational Supplement. CLSI document M100-S23. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA, 2013.
  16. Owlia P, Saderi H, Mansouri S, Salemi S, Ameli H. Drug resistance of isolated strains of Pseudomonas aeruginosa from burn wound infections to selected antibiotics and disinfectants.Iran J Pathol 2006; 1(2): 64-9.
  17.  Moazami Goudarzi S, Eftekhar F. Assesment of carbapenem susceptibility and multidrug-resistance in Pseudomonas aeruginosa burn isolates in Tehran. Jondishapour J Microbiol 2013; 6(2): 162-5.
  18. Japoni A, Alborzi A, Kalani M, Nasiri J, Hayati M, Farshad S. Susceptibility patterns and cross-resistance of antibiotics against Pseudomonas aeruginosa isolated from burn patients in the South of Iran. Burns 2006; 32(3): 343-7.
  19. Yetkin G, Otlu B, Cicek A, Kuzucu C, Duramaz R. Clinical, microbiologic, and epidemiologic characteristics of Pseudomonas aeruginosa infections in a Urinary Hospital, Malatya, Turkey. Am J Infect Control 2006; 34(4): 188-92.
  20. Ojeda Vargas MM, Alonso R, Vindel A, Monzon-Moreno C. Epidemiological considerations of infections caused by Pseudomonas aeruginosa in a Canary Islands hospitals. Med Mal Infect 1993: 434-7.
  21. Alaghehbandan R, Azimi L, Rastegar Lari A. Nosocomial infections among burn patients in Tehran, Iran: a decade later. Ann Burns Fire Disasters 2012; 25(1): 3-7.
  22. Saderi H, Karimi Z, Owlia P, Bahar MA, Akhavi Rad SMB. Phenotypic detection of Metalo-beta-Lactamase producing Pseudomonas aeruginosa strains isolated from burn patients. Iran J Pathol 2008; 3(1): 20-4.
  23. Ranjbar R, Owlia P, Saderi H, Mansouri S. Characterization of Pseudomonas aeruginosa strains isolated from burned patients hospitalized in a major burn center in Tehran, Iran. Acta Medica Iranica 2011; 49(10): 675-9.
  24. Shahcheraghi F, Badmasti F, Feizabadi MM. Molecular characterization of class 1 integrons in MDR Pseudomonas aeruginosa isolated from clinical settings in Iran, Tehran. FEMS Immunol Med Microb 2010; 58: 421-5.
  25. Hosseini Jazani N, Zahedi A, Garebagi N. Phenotipic detection of methalo-β-lactamase producing Pseudomonas aeruginosa isolated from Urmia hospitals. AfrJ Microbiol Res 2012; 6(7): 1387-92.
  26. Salimi H., Yakhchali B, Owlia P, Lari AR. Molecular Epidemiology and Drug Susceptibility of Pseudomonas aeruginosa Strains Isolated From Burn Patients. Lab Medicine 2010; 41(9): 540-4.
  27. Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res 2010; 10(4): 441-51.
  28. Croft AC, D'Antoni AV, Terzulli SL. Update on the antibacterial resistance crisis. Med Sci Monit 2007; 13 (6): RA103-18.
  29. Conejo MC, Martinez-Martinez L, Garcia I, Picabea L, Pascual A. Effect of siliconized latex urinary catheters on the activity of carbapenems against Pseudomonas aeruginosa strains with defined mutations in ampC, oprD, and genes coding for efflux systems. Int J Antimicrob Agents 2003; 22(2): 122-7.
  30. Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 2002; 95(41): 22-6.
  31. Strateva T, Yordanov D. Pseudomonas aeruginosa a phenomenon of bacteria resistance. J Med Microb 2009; 58: 1133-48.
  32. Morita Y, Komori Y, Mima T, Kuroda T, Mizushima T, Tsuchiya T. Construction of a series of mutants lacking all of the four major mex operons for multidrug efflux pumps or possessing each one of the operons from Pseudomonas aeruginosa PAO1: MexCD-OprJ is an inducible pump. FEMS Microbiol Lett 2001; 202; 139-43.
  33. Narita ShI, Eda Sh, Yoshihara E, Nakae T. Linkage of the efflux-pump expression level with substrate extrusion rate in the MexAB-OprM efflux pump of Pseudomonas aeruginosa. Biochem Biophys Res Commun 2003; 308(4): 922-6.
  34. Aghazadeh M, Hojabri Z, Mahdian R, Nahaei MR, Rahmati M, Hojabri T, Pirzadeh T, Pajand O. Role of efflux pumps: MexAB-OprM and MexXY-OprA), AmpC cephalosporinase and OprD porin in non-metallo-β-lactamase producing Pseudomonas aeruginosa isolated from cystic fibrosis and burn patients. Infect Genet Evol 2014; 24: 187-92.