Document Type : Original Research


1 Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran

2 Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran

3 Department of Veterinary Medicine, Babol Branch, Islamic Azad University, Babol, Iran

4 Department of Surgery, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran

5 Department of Biology, Gorgan Branch, Islamic Azad University, Gorgan, Iran

6 Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran



Background & Objective: Besides the clinical and laboratory research on the COVID-19 virus, the bioinformatics study in the field of genetics of immunity to COVID-19 is of particular importance. In this account, studies show that in patients with COVID-19, the level of tumor necrosis alpha (TNFα) and interleukin-6 (IL-6) is high and in severe cases of COVID-19, the production of IL-6, TNF-α, and other cytokines increases profoundly. On the other hand, investigating the molecular structure and receptors of IL-6 and TNFα and the structural analysis of the receptor proteins may potentially help to develop new therapeutic plans for COVID-19 infection.
Methods: To identify genes with significant and different expressions in patients with COVID-19 in a microarray data set containing transcriptional profiles from GEO as a functional genomic database the GEO query package version 2.64.2 in a programming language R version 4.2.1 was downloaded. In this way, functional enrichment analysis for DEGs, WikiPathways, REGO, gene ontology, and STRING database was also investigated and employed.
Results: The structure and function of pro-inflammatory cytokines TNFα and IL-6 involved in the pathogenesis of COVID-19 were investigated, and in general, after performing various analyses in this study and extracting A series of genes with different expressions from the KEGG database, the final 5 DEGs include CXCL14, CXCL6, CCL8, CXCR1, TNFRSF10, and the relationship and expression effects of them were observed in different pathways.
Conclusion: IL-6 and TNFα were involved in immunological processes that had a direct and indirect relationship with the activation of cytokines, including IL6 and TNF-a, and cytokine storm, and this indicates their role in the formation of problems and complications, including ARDS, in COVID-19 patients. Of course, determining the effectiveness of each of these genes requires more specialized and clinical studies.


Main Subjects

  1. De la Rey M. Die ekonomiese waarde van embriospoeling en-oordrag. Veeplaas. 2019;10(4):74-7.
  2. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microb. 2020;27(3):325-8. [DOI:10.1016/j.chom.2020.02.001] [PMID]
  3. Friedlingstein P, O'sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, et al. Global carbon budget 2020. Earth System Science Data. 2020;12(4):3269-340. [DOI:10.5194/essd-12-3269-2020]
  4. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-5. [DOI:10.1016/j.ijid.2020.03.017] [PMID]
  5. Huang Q, Wu X, Zheng X, Luo S, Xu S, Weng J. Targeting inflammation and cytokine storm in COVID-19. Pharmacol Res. 2020;159:105051. [DOI:10.1016/j.phrs.2020.105051] [PMID]
  6. Liu Y-C, Kuo R-L, Shih S-R. COVID-19: The first documented coronavirus pandemic in history. Biomed J. 2020;43(4):328-33. [DOI:10.1016/] [PMID]
  7. Guo Y-R, Cao Q-D, Hong Z-S, Tan Y-Y, Chen S-D, Jin H-J, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Military Med Res. 2020;7(1):1-10. [DOI:10.1186/s40779-020-00240-0] [PMID]
  8. Lacina L, Brábek J, Král V, Kodet O, Smetana Jr K. Interleukin-6: A molecule with complex biological impact in cancer. 2019.
  9. Chen X, Tian J, Su GH, Lin J. Blocking IL-6/GP130 signaling inhibits cell viability/proliferation, glycolysis, and colony forming activity in human pancreatic cancer cells. Curr Cancer Drug Targets. 2019;19(5):417-27. [DOI:10.2174/1568009618666180430123939] [PMID]
  10. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microb Infect. 2020;9(1):1123-30. [DOI:10.1080/22221751.2020.1770129] [PMID]
  11. Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234-48. [DOI:10.1038/nrclinonc.2018.8] [PMID]
  12. Wu X, Tao P, Zhou Q, Li J, Yu Z, Wang X, et al. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget. 2017;8(13):20741. [DOI:10.18632/oncotarget.15119] [PMID]
  13. Aqel S, Kraus E, Jena N, Kumari V, Granitto M, Mao L, et al. Novel small molecule IL-6 inhibitor suppresses autoreactive Th17 development and promotes Treg development. Clin Exp Immunol. 2019;196(2):215-25. [DOI:10.1111/cei.13258] [PMID]
  14. Del Valle DM, Kim-Schulze S, Huang H-H, Beckmann ND, Nirenberg S, Wang B, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26(10):1636-43. [DOI:10.1038/s41591-020-1051-9] [PMID]
  15. Saleh A, Sultan A, Elashry MA, Farag A, Mortada MI, Ghannam MA, et al. Association of TNF-α G-308 a promoter polymorphism with the course and outcome of COVID-19 patients. Immunol Investigat. 2022;51(3):546-57. [DOI:10.1080/08820139.2020.1851709] [PMID]
  16. Feldmann M, Maini RN. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med. 2003;9(10):1245-50. [DOI:10.1038/nm939] [PMID]
  17. Cheng F, Murray JL, Zhao J, Sheng J, Zhao Z, Rubin DH. Systems biology-based investigation of cellular antiviral drug targets identified by gene-trap insertional mutagenesis. PLoS Comput Biol. 2016;12(9):e1005074. [DOI:10.1371/journal.pcbi.1005074] [PMID]
  18. Lo CY, Tsai TL, Lin CN, Lin CH, Wu HY. Interaction of coronavirus nucleocapsid protein with the 5′‐and 3′‐ends of the coronavirus genome is involved in genome circularization and negative‐strand RNA synthesis. FEBS J. 2019;286(16):3222-39. [DOI:10.1111/febs.14863] [PMID]
  19. Kim J-M, Chung Y-S, Jo HJ, Lee N-J, Kim MS, Woo SH, et al. Identification of coronavirus isolated from a patient in Korea with COVID-19. Osong public health and research perspectives. 2020;11(1):3. [DOI:10.24171/j.phrp.2020.11.1.02] [PMID]
  20. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 2012;41(D1):D991-D5. [DOI:10.1093/nar/gks1193] [PMID]
  21. Reinhardt J, Landsberg J, Schmid-Burgk JL, Ramis BB, Bald T, Glodde N, et al. MAPK signaling and inflammation link melanoma phenotype switching to induction of CD73 during immunotherapy. Cancer Res. 2017;77(17):4697-709. [DOI:10.1158/0008-5472.CAN-17-0395] [PMID]
  22. Gee J, Marquez P, Su J, Calvert GM, Liu R, Myers T, et al. First month of COVID-19 vaccine safety monitoring-United States, December 14, 2020-January 13, 2021. Morb Mortal Wkly Rep. 2021;70(8):283. [DOI:10.15585/mmwr.mm7008e3] [PMID]
  23. Kanehisa M, Goto S. Comprehensive gene and pathway analysis of cervical cancer progression. Nucleic Acids Res. 2000;28:27-30. [DOI:10.1093/nar/28.1.27] [PMID]
  24. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. American heart association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics-2015 update: a report from the American Heart Association Circulation. 2015;131(4):e29-e322.
  25. Sklarczyk C. Assessing effects of habitat amount vs. configuration on avian diversity in managed pine landscapes: Mississippi State University; 2021.
  26. Xu L, Mao Y, Chen G. Risk factors for 2019 novel coronavirus disease (COVID-19) patients progressing to critical illness: a systematic review and meta-analysis. Aging (Albany NY). 2020;12(12):12410. [DOI:10.18632/aging.103383] [PMID]
  27. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intens Care Med. 2020;46(4):586-90. [DOI:10.1007/s00134-020-05985-9] [PMID]
  28. Zhang X, Zhang Y, Qiao W, Zhang J, Qi Z. Baricitinib, a drug with potential effect to prevent SARS-COV-2 from entering target cells and control cytokine storm induced by COVID-19. Int Immunopharmacol. 2020;86:106749. [DOI:10.1016/j.intimp.2020.106749] [PMID]
  29. Hu B, Huang S, Yin L. The cytokine storm and COVID‐19. J Med Virol. 2021;93(1):250-6. [DOI:10.1002/jmv.26232] [PMID]
  30. Coomes EA, Haghbayan H. Interleukin‐6 in COVID‐19: a systematic review and meta‐analysis. Rev Med Virol. 2020;30(6):1-9. [DOI:10.1002/rmv.2141] [PMID]
  31. Cai J, Sun W, Huang J, Gamber M, Wu J, He G. Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerg Infect Dis. 2020;26(6):1343. [DOI:10.3201/eid2606.200412] [PMID]
  32. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intens Care Med. 2020;46(5):846-8. [DOI:10.1007/s00134-020-05991-x] [PMID]
  33. Dhall A, Patiyal S, Sharma N, Usmani SS, Raghava GP. Computer-aided prediction and design of IL-6 inducing peptides: IL-6 plays a crucial role in COVID-19. Briefings Bioinformat. 2021;22(2):936-45. [DOI:10.1093/bib/bbaa259] [PMID]
  34. Lynch MR, Tang J. COVID-19 and kidney injury. RI Med J. 2020;103(8):24-8.
  35. Woo PC, Lau SK, Lam CS, Tsang AK, Hui S-W, Fan RY, et al. Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus. J Virol. 2014;88(2):1318-31. [DOI:10.1128/JVI.02351-13] [PMID]
  36. Li Y, Hou G, Zhou H, Wang Y, Tun HM, Zhu A, et al. Multi-platform omics analysis reveals molecular signature for COVID-19 pathogenesis, prognosis and drug target discovery. Signal Transduct Targeted Ther. 2021;6(1):155. [DOI:10.1038/s41392-021-00508-4] [PMID]
  37. Xiao N, Nie M, Pang H, Wang B, Hu J, Meng X, et al. Integrated cytokine and metabolite analysis reveals immunometabolic reprogramming in COVID-19 patients with therapeutic implications. Nat Commun. 2021;12(1):1618. [DOI:10.1038/s41467-021-21907-9] [PMID]
  38. Sagulkoo P, Plaimas K, Suratanee A, Vissoci Reiche EM, Maes M. Immunopathogenesis and immunogenetic variants in COVID-19. Curr Pharma Design. 2022;28(22):1780-97. [DOI:10.2174/1381612828666220519150821] [PMID]