Document Type : Original Research


1 Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt

2 Department of Clinical Oncology& Nuclear Medicine, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt



Background & Objective: The regulator of chromosome condensation 2 (RCC2) and RAS-related C3 botulinum toxin substrate 1 (Rac1) have been implicated in the promotion of breast cancer cell proliferation and migration. The signaling pathway involving p53/RCC2/Rac1 has been proposed to contribute to the regulation of colon cancer metastasis. However, until now, this pathway has not been thoroughly investigated in breast cancer. This study seeks to explore the influence of immunohistochemical expression and the correlation among RCC2, Rac1, and p53 in breast infiltrating ductal carcinoma (IDC).
Methods: Immunostaining was performed on 120 breast IDC specimens using RCC2, Rac1, and p53 antibodies. Statistical analyses were conducted to examine the correlations between these antibodies.
Results: A Positive expression of RCC2, Rac1, and p53 was observed in 116 (96.7%), 120 (100%), and 33 (27.5%) of the breast cancer cases, respectively. RCC2, Rac1, and p53 demonstrated association with poor prognostic parameters such as frequent mitoses, high Ki-67 status, positive lymphovascular invasion (LVI), and advanced tumor stage. A highly significant direct correlation was found between each immunohistochemical marker and the other two markers. Shorter overall survival was linked to multifocal tumors (P=0.017), advanced tumor stage (T3) (P=0.010), Luminal B subtype (P=0.015), progressive disease (P=0.003), positive Her2neu status (P=0.008), and metastasis to distant organs (P<0.001). However, RCC2, Rac1, and p53 did not exhibit a significant association with overall survival.
Conclusion: The high expression levels of RCC2, Rac1, and p53 in breast IDC suggest their potential role in tumor behavior. The association of RCC2 and Rac1 with poor prognostic parameters may serve as predictive indicators for aggressive tumors, thus implying that targeted therapy could be beneficial in the treatment of breast cancer.


Main Subjects

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. [DOI:10.3322/caac.21660] [PMID]
  2. Ibrahim AS, Khaled HM, Mikhail NN, Baraka H, Kamel H. Cancer incidence in Egypt: results of the national population-based cancer registry program. J. Cancer Epidemiol. 2014;2014. [DOI:10.1155/2014/437971] [PMID]
  3. Clark BZ, Onisko A, Assylbekova B, Li X, Bhargava R, Dabbs DJ. Breast cancer global tumor biomarkers: a quality assurance study of intratumoral heterogeneity. Mod Pathol. 2019;32(3):354-66. [DOI:10.1038/s41379-018-0153-0] [PMID]
  4. Chen Z, Wu W, Huang Y, Xie L, Li Y, Chen H, Li W, Yin D, Hu K. RCC2 promotes breast cancer progression through regulation of Wnt signaling and inducing EMT. J Cancer. 2019;10(27):6837. [DOI:10.7150/jca.36430] [PMID]
  5. Liang J, Oyang L, Rao S, Han Y, Luo X, Yi P, Lin J, Xia L, Hu J, Tan S, Tang L. Rac1, a potential target for tumor therapy. Front Oncol. 2021;11:674426. [DOI:10.3389/fonc.2021.674426] [PMID]
  6. Rao J, Zhou ZH, Yang J, Shi YU, Xu SL, Wang B, Ping YF, Chen LU, Cui YH, Zhang X, Wu F. Semaphorin-3F suppresses the stemness of colorectal cancer cells by inactivating Rac1. Cancer Lett. 2015;358(1):76-84. [DOI:10.1016/j.canlet.2014.12.040] [PMID]
  7. Cardama GA, Alonso DF, González N, Maggio J, Gomez DE, Rolfo C, Menna PL. Relevance of small GTPase Rac1 pathway in drug and radio-resistance mechanisms: Opportunities in cancer therapeutics. Crit Rev Oncol/Hematol. 2018;124:29-36. [DOI:10.1016/j.critrevonc.2018.01.012] [PMID]
  8. Powell E, Piwnica-Worms D, Piwnica-Worms H. Contribution of p53 to Metastasis. Cancer Discovery. 2014;4(4):405-14. [DOI:10.1158/2159-8290.CD-13-0136] [PMID]
  9. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11(3):577-90. [DOI:10.1016/S1097-2765(03)00050-9] [PMID]
  10. Song C, Liang L, Jin Y, Li Y, Liu Y, Guo L, Wu C, Yun CH, Yin Y. RCC2 is a novel p53 target in suppressing metastasis. Oncogene. 2018;37(1):8-17. [DOI:10.1038/onc.2017.306] [PMID]
  11. Bloom HJ, Richardson W. Histological grading and prognosis in breast cancer: a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer. 1957;11(3):359. [DOI:10.1038/bjc.1957.43] [PMID]
  12. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long‐term follow‐up. Histopathology. 1991;19(5):403-10. [DOI:10.1111/j.1365-2559.1991.tb00229.x] [PMID]
  13. Giuliano AE, Edge SB, Hortobagyi GN. of the AJCC cancer staging manual: breast cancer. Ann Surg Oncol. 2018;25:1783-5. [DOI:10.1245/s10434-018-6486-6] [PMID]
  14. Fong Y, Evans J, Brook D, Kenkre J, Jarvis P, Gower-Thomas K. The Nottingham Prognostic Index: five-and ten-year data for all-cause survival within a screened population. Ann R Coll Surg Engl. 2015;97(2):137-9. [DOI:10.1308/003588414X14055925060514] [PMID]
  15. Zgura A, Galesa L, Bratila E, Anghel R. Relationship between tumor infiltrating lymphocytes and progression in breast cancer. Maedica. 2018;13(4):317.
  16. Rakha EA, Martin S, Lee AH, Morgan D, Pharoah PD, Hodi Z, MacMillan D, Ellis IO. The prognostic significance of lymphovascular invasion in invasive breast carcinoma. Cancer. 2012;118(15):3670-80. [DOI:10.1002/cncr.26711] [PMID]
  17. De Jong JS, van Diest PJ, Baak JP. Number of apoptotic cells as a prognostic marker in invasive breast cancer. Br J Cancer. 2000;82(2):368-73. [DOI:10.1054/bjoc.1999.0928] [PMID]
  18. Meyer JS, Cosatto E, Graf HP. Mitotic index of invasive breast carcinoma: achieving clinically meaningful precision and evaluating tertial cutoffs. Arch Pathol Lab Med. 2009;133(11):1826-33. [DOI:10.5858/133.11.1826] [PMID]
  19. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Archives of pathology & laboratory medicine. 2010;134(6):907-22. [DOI:10.5858/134.6.907] [PMID]
  20. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Annals of oncology: official journal of the European Society for Medical Oncology. 2011;22(8):1736-47. [DOI:10.1093/annonc/mdr304] [PMID]
  21. Suciu C, Muresan A, Cornea R, Suciu O, Dema A, Raica M. Semi-automated evaluation of Ki-67 index in invasive ductal carcinoma of the breast. Oncology letters. 2014;7(1):107-14. [DOI:10.3892/ol.2013.1654] [PMID] []
  22. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Archives of pathology & laboratory medicine. 2018;142(11):1364-82. [DOI:10.5858/arpa.2018-0902-SA] [PMID]
  23. Liu B, Xiong J, Liu G, Wu J, Wen L, Zhang Q, et al. High expression of Rac1 is correlated with partial reversed cell polarity and poor prognosis in invasive ductal carcinoma of the breast. Tumor Biology. 2017;39(7):1010428317710908. [DOI:10.1177/1010428317710908] [PMID]
  24. Melling N, Norrenbrock S, Kluth M, Simon R, Hube‑Magg C, Steurer S, et al. p53 overexpression is a prognosticator of poor outcome in esophageal cancer. Oncology letters. 2019;17(4):3826-34. [DOI:10.3892/ol.2019.10020] [PMID]
  25. Yao X, Li L, Piao L, Zhang G, Huang X, Liang Z. Regulator of Chromosome Condensation 2 Expression Profile in Hepatocellular Carcinoma and Its Potential Link to Clinical Parameters. Int J Hum Genet. 2020;20(3):155-60. [DOI:10.31901/24566330.2020/20.03.763]
  26. Wang W, Xu B, Zhang Z, Fang K, Chang X. RCC2 expression stimulates ER-positive breast tumorigenesis. J Oncol. 2020;2020. [DOI:10.1155/2020/5619462] [PMID]
  27. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228-47. [DOI:10.1016/j.ejca.2008.10.026] [PMID]
  28. Siegel AF. Chapter 10—Hypothesis testing: Deciding between reality and coincidence. Practical business statistics. 2012. [DOI:10.1016/B978-0-12-820025-4.00010-5]
  29. Bruun J, Kolberg M, Ahlquist TC, Røyrvik EC, Nome T, Leithe E, Lind GE, Merok MA, Rognum TO, Bjørkøy G, Johansen T. Regulator of chromosome condensation 2 identifies high-risk patients within both major phenotypes of colorectal cancer. Clin Cancer Res. 2015;21(16):3759-70. [DOI:10.1158/1078-0432.CCR-14-3294] [PMID]
  30. Li X, Kang K, Peng Y, Shen L, Shen L, Zhou Y. Comprehensive analysis of the expression profile and clinical implications of regulator of chromosome condensation 2 in pan-cancers. Aging (Albany NY). 2022;14(22):9221. [DOI:10.18632/aging.204403] [PMID]
  31. Pang B, Wu N, Guan R, Pang L, Li X, Li S, Tang L, Guo Y, Chen J, Sun D, Sun H. Overexpression of RCC2 enhances cell motility and promotes tumor metastasis in lung adenocarcinoma by inducing epithelial–mesenchymal transition. Clin. Cancer Res. 2017;23(18):5598-610. [DOI:10.1158/1078-0432.CCR-16-2909] [PMID]
  32. Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG. Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci. 2000;97(1):185-9. [DOI:10.1073/pnas.97.1.185] [PMID]
  33. Ma N, Xu E, Luo Q, Song G. Rac1: A Regulator of Cell Migration and a Potential Target for Cancer Therapy. Molecules. 2023;28(7):2976. [DOI:10.3390/molecules28072976] [PMID]
  34. Yamaguchi M, Takagi K, Sato A, Miki Y, Miyashita M, Sasano H, Suzuki T. Rac1 activation in human breast carcinoma as a prognostic factor associated with therapeutic resistance. Breast Cancer. 2020;27:919-28. [DOI:10.1007/s12282-020-01091-2] [PMID]
  35. Shan G, Tang T, Qian H, Xia Y. Expression of Tiam1 and Rac1 proteins in renal cell carcinoma and its clinical-pathological features. Int J Clin. Exp Pathol.2017;10(11):11114.
  36. Wu YJ, Tang Y, Li ZF, Li Z, Zhao Y, Wu ZJ, Su Q. Expression and significance of R ac1, P ak1 and R ock1 in gastric carcinoma.  Asia Pac J Clin Oncol. 2014;10(2):e33-9. [DOI:10.1111/ajco.12052]
  37. Yang W, Lv S, Liu X, Liu H, Yang W, Hu F. Up-regulation of Tiam1 and Rac1 correlates with poor prognosis in hepatocellular carcinoma. Jpn J Clin Oncol. 2010;40(11):1053-9. [DOI:10.1093/jjco/hyq086] [PMID]
  38. Lin Y, Fu F, Lv J, Wang M, Li Y, Zhang J, Wang C. Identification of potential key genes for HER-2 positive breast cancer based on bioinformatics analysis. Medicine. 2020;99(1). [DOI:10.1097/MD.0000000000018445] [PMID]
  39. Sun J, Gaidosh G, Xu Y, Mookhtiar A, Man N, Cingaram PR, Blumenthal E, Shiekhattar R, Goka ET, Nimer SD, Lippman ME. RAC1 plays an essential role in estrogen receptor alpha function in breast cancer cells. Oncogene. 2021;40(40):5950-62. [DOI:10.1038/s41388-021-01985-1] [PMID]
  40. Wu N, Ren D, Li S, Ma W, Hu S, Jin Y, Xiao S. RCC2 over-expression in tumor cells alters apoptosis and drug sensitivity by regulating Rac1 activation. BMC Cancer. 2018;18(1):1-1. [DOI:10.1186/s12885-017-3908-y] [PMID]
  41. Lipponen P, Ji H, Aaltomaa S, Syrjänen S, Syrjänen K. p53 protein expression in breast cancer as related to histopathological characteristics and prognosis. Int J Cancer Res 1993;55(1):51-6. [DOI:10.1002/ijc.2910550110] [PMID]
  42. Olivier M, Langerø d A, Carrieri P, Bergh J, Klaar S, Eyfjord J, Theillet C, Rodriguez C, Lidereau R, Biè che I, Varley J. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clinical cancer research: Am J Cancer Res. 2006;12(4):1157-67. [DOI:10.1158/1078-0432.CCR-05-1029] [PMID]
  43. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28(6):622-9. [DOI:10.1002/humu.20495] [PMID]
  44. Langerød A, Zhao H, Borgan Ø, Nesland JM, Bukholm IR, Ikdahl T, Kåresen R, Børresen-Dale AL, Jeffrey SS. TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res. 2007;9:1-6. [DOI:10.1186/bcr1675] [PMID]
  45. Overgaard J. TP53 mutation is an independent prognostic marker for poor outcome in both node-negative and node-positive breast cancer. Acta Oncol. 2000;39(3):327-33. [DOI:10.1080/028418600750013096] [PMID]
  46. Dookeran KA, Dignam JJ, Ferrer K, Sekosan M, McCaskill-Stevens W, Gehlert S. p53 as a marker of prognosis in African-American women with breast cancer. Ann Surg Oncol. 2010;17:1398-405. [DOI:10.1245/s10434-009-0889-3] [PMID]
  47. Rana MK, Rana AP, Khera U. Expression of p53 and p16 in Carcinoma Breast Tissue: Depicts Prognostic Significance or Coincidence. Cureus. 2021;13(11). [DOI:10.7759/cureus.19395]
  48. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Bast Jr RC. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25(33):5287-312. [DOI:10.1200/JCO.2007.14.2364] [PMID]
  49. Dobes P, Podhorec J, Coufal O, Jureckova A, Petrakova K, Vojtesek B, Hrstka R. Influence of mutation type on prognostic and predictive values of TP53 status in primary breast cancer patients. Oncol Rep. 2014;32(4):1695-702. [DOI:10.3892/or.2014.3346] [PMID]
  50. Williamson RC, Cowell CA, Hammond CL, Bergen DJ, Roper JA, Feng Y, Rendall TC, Race PR, Bass MD. Coronin-1C and RCC2 guide mesenchymal migration by trafficking Rac1 and controlling GEF exposure. J Cell Sci. 2014;127(19):4292-307. [DOI:10.1242/jcs.154864] [PMID]
  51. Humphries JD, Byron A, Bass MD, Craig SE, Pinney JW, Knight D, Humphries MJ. Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6. Sci Signal.. 2009;2(87):ra51-. [DOI:10.1126/scisignal.2000396]
  52. Guo F, Gao Y, Wang L, Zheng Y. p19Arf-p53 tumor suppressor pathway regulates cell motility by suppression of phosphoinositide 3-kinase and Rac1 GTPase activities. J Biol Chem. 2003;278(16):14414-9. [DOI:10.1074/jbc.M300341200] [PMID]
  53. Bosco EE, Ni W, Wang L, Guo F, Johnson JF, Zheng Y. Rac1 targeting suppresses p53 deficiency–mediated lymphomagenesis. Blood, J Am Soc Hematol. 2010;115(16):3320-8. [DOI:10.1182/blood-2009-02-202440] [PMID]
  54. Toikkanen S, Helin H, Isola J, Joensuu H. Prognostic significance of HER-2 oncoprotein expression in breast cancer: a 30-year follow-up. J Clin Oncol. 1992;10(7):1044-8. [DOI:10.1200/JCO.1992.10.7.1044] [PMID]
  55. Fitzgibbons PL, Page DL, Weaver D, Thor AD, Allred DC, Clark GM, Ruby SG, O'Malley F, Simpson JF, Connolly JL, Hayes DF. Prognostic factors in breast cancer: College of American Pathologists consensus statement 1999. Arch Pathol Lab Med. 2000;124(7):966-78. [DOI:10.5858/2000-124-0966-PFIBC] [PMID]
  56. Tazhibi M, Fayaz M, Mokarian F. Detection of prognostic factors in metastatic breast cancer. J Res Med Sci. 2013;18(4):283.
  57. Takagi K, Miki Y, Onodera Y, Ishida T, Watanabe M, Sasano H, et al. ARHGAP15 in Human Breast Carcinoma: A Potent Tumor Suppressor Regulated by Androgens Int J Mol Sci. 2018;19(3):804. [DOI:10.3390/ijms19030804] [PMID]
  58. Tian Y, Xu L, He Y, Xu X, Li K, Ma Y, Gao Y, Wei D, Wei L. Knockdown of RAC1 and VASP gene expression inhibits breast cancer cell migration. Oncol Lett. 2018;16(2):2151-60. [DOI:10.3892/ol.2018.8930] [PMID]