Document Type : Original Research


1 Department of Hematology, Medical Oncology and Stem Cell Transplantation, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Pathology, Molecular Pathology and Cytogenetic Ward, Shiraz University of Medical Sciences, Shiraz, Iran

3 Molecular Pathology and Cytogenetic Ward, Pathology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

4 Department of Molecular Pathology & Cytogenetics, Shiraz University of Medical Sciences, Shiraz, Iran

5 Department of Hematology, Isfahan University of Medical Sciences, Isfahan, Iran

6 Evidence-Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

7 Molecular Pathology and Cytogenetic Ward, Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

8 Department of Epidemiology and Biostatistics, School of Health, Modeling in Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran

9 Clinical and Anatomical Pathologist, Molecular Pathology and Cytogenetic Ward, Pathology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.


Background & Objective: Some of the patients with myelodysplastic syndrome (MDS) are categorized as good prognosis based on the Revised International Prognostic Scoring System (IPSS-R). However, these patients may have poor clinical outcomes. It seems that the current diagnostic tools and IPSS-R cannot consider genetic factors for determining the prognosis of MDS patients.
Methods: This cross-sectional study included all adult MDS patients of both genders who were admitted from March 2015 to March 2020 to the Hematology wards of two educational tertiary hospitals in Iran (Namazi and Faghihi, affiliated with Shiraz University of Medical Sciences). Study data included relevant retrospective data from medical records and the results of immunohistochemical p53 staining on bone marrow biopsies.
Results: Of the 84 patients, 65 (77.4%) showed p53 expression in bone marrow. They had shorter median survival than those without p53 expression. Considering both variables of P53 IHC results and IPSS-R score, the patients who died with low-risk IPSS-R score presented high p53 expression.
Conclusion: This study shows that the investigation of p53 expression by IHC at the time of diagnosis is a valuable indicator of survival rate in MDS patients. These data suggest that the immunohistochemical analysis of p53 can be a prognostic tool for MDS and should be used as an adjunct test to make decisions on the best therapeutic choice.


Main Subjects

  1. Luo B, Dong F, Qin T, Zhang Q, Bai H, Wang J, et al. Myelodysplastic syndromes are multiclonal diseases derived from hematopoietic stem and progenitor cells. Exp Hematol Oncol. 2022;11(1):1-6. [DOI:10.1186/s40164-022-00280-3] [PMID] [PMCID]
  2. Xing T, Lyu Z-S, Duan C-W, Zhao H-Y, Tang S-Q, Wen Q, et al. Dysfunctional bone marrow endothelial progenitor cells are involved in patients with myelodysplastic syndromes. J Transl Med. 2022;20(1):1-17. [DOI:10.1186/s12967-022-03354-2] [PMID] [PMCID]
  3. Du Y, Fryzek J, Sekeres MA, Taioli E. Smoking and alcohol intake as risk factors for myelodysplastic syndromes (MDS). Leukemia research. 2010;34(1):1-5. [DOI:10.1016/j.leukres.2009.08.006] [PMID]
  4. Beran M. Intensive chemotherapy for patients with high-risk myelodysplastic syndrome. Int J Hematol. 2000;72(2):139-50.
  5. Bajaj R, Xu F, Xiang B, Wilcox K, DiAdamo AJ, Kumar R, et al. Evidence-based genomic diagnosis characterized chromosomal and cryptic imbalances in 30 elderly patients with myelodysplastic syndrome and acute myeloid leukemia. Mol Cytogenet. 2011;4(1):1-11. [DOI:10.1186/1755-8166-4-3] [PMID] [PMCID]
  6. Liew E, Owen C. Familial myelodysplastic syndromes: a review of the literature. Haematologica. 2011;96(10):1536. [DOI:10.3324/haematol.2011.043422] [PMID] [PMCID]
  7. Gu S, Xia J, Tian Y, Zi J, Ge Z. A novel scoring system integrating molecular abnormalities with IPSS-R can improve the risk stratification in patients with MDS. BMC Cancer. 2021;21(1):1-9. [DOI:10.1186/s12885-021-07864-y] [PMID] [PMCID]
  8. Lin M-E, Hou H-A, Tsai C-H, Wu S-J, Kuo Y-Y, Tseng M-H, et al. Dynamics of DNMT3A mutation and prognostic relevance in patients with primary myelodysplastic syndrome. Clin Epigenet. 2018;10(1):1-12. [DOI:10.1186/s13148-018-0476-1] [PMID] [PMCID]
  9. Bachegowda L, Gligich O, Mantzaris I, Schinke C, Wyville D, Carrillo T, et al. Signal transduction inhibitors in treatment of myelodysplastic syndromes. J Hematol Oncol. 2013;6(1):1-11. [DOI:10.1186/1756-8722-6-50] [PMID] [PMCID]
  10. Ok CY, Patel KP, Garcia-Manero G, Routbort MJ, Peng J, Tang G, et al. TP53 mutation characteristics in therapy-related myelodysplastic syndromes and acute myeloid leukemia is similar to de novo diseases. J Hematol Oncol. 2015;8(1):1-8. [DOI:10.1186/s13045-015-0139-z] [PMID] [PMCID]
  11. Niparuck P, Police P, Noikongdee P, Siriputtanapong K, Limsuwanachot N, Rerkamnuaychoke B, et al. TP53 mutation in newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Diagn Pathol. 2021;16(1):1-8. [DOI:10.1186/s13000-021-01162-8] [PMID] [PMCID]
  12. Sethi NS, Kikuchi O, Duronio GN, Stachler MD, McFarland JM, Ferrer-Luna R, et al. Early TP53 alterations engage environmental exposures to promote gastric premalignancy in an integrative mouse model. Nat Genet. 2020;52(2):219-30. [DOI:10.1038/s41588-019-0574-9] [PMID] [PMCID]
  13. Kaneko H, Misawa S, Horiike S, Nakai H, Kashima K. TP53 mutations emerge at early phase of myelodysplastic syndrome and are associated with complex chromosomal abnormalities. Blood. 1995;85(8):2189-93. [DOI:10.1182/blood.V85.8.2189.bloodjournal8582189] [PMID]
  14. Stengel A, Kern W, Haferlach T, Meggendorfer M, Fasan A, Haferlach C. The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL: an analysis of 3307 cases. Leukemia. 2017;31(3):705-11. [DOI:10.1038/leu.2016.263] [PMID]
  15. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. J Am Soc Hematol. 1997;89(6):2079-88. [DOI:10.1182/blood.V89.6.2079]
  16. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood J Am Soc Hematol. 2012;120(12):2454-65. [DOI:10.1182/blood-2012-03-420489] [PMID] [PMCID]
  17. Neukirchen J, Lauseker M, Blum S, Giagounidis A, Lübbert M, Martino S, et al. Validation of the revised international prognostic scoring system (IPSS-R) in patients with myelodysplastic syndrome: a multicenter study. Leuk Res. 2014;38(1):57-64. [DOI:10.1016/j.leukres.2013.10.013] [PMID]
  18. Della Porta MG, Alessandrino EP, Bacigalupo A, Van Lint MT, Malcovati L, Pascutto C, et al. Predictive factors for the outcome of allogeneic transplantation in patients with MDS stratified according to the revised IPSS-R. Blood J Am Soc Hematol. 2014;123(15):2333-42. [DOI:10.1182/blood-2013-12-542720] [PMID]
  19. Greenberg PL, Stone RM, Al-Kali A, Barta SK, Bejar R, Bennett JM, et al. Myelodysplastic syndromes, version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2017;15(1):60-87. [DOI:10.6004/jnccn.2017.0007] [PMID]
  20. Nazha A, Bejar R. Molecular data and the IPSS-R: how mutational burden can affect prognostication in MDS. Curr Hematol Malig Rep. 2017;12(5):461-7. [DOI:10.1007/s11899-017-0407-9] [PMID]
  21. Kurotaki H, Tsushima Y, Nagai K, Yagihashi S. Apoptosis, bcl-2 expression and p53 accumulation in myelodysplastic syndrome, myelodysplastic-syndrome-derived acute myelogenous leukemia and de novo acute myelogenous leukemia. Acta Haematol. 1999;102(3):115-23. [DOI:10.1159/000040984] [PMID]
  22. Ramos F, Fuertes-Núñez M, Suárez-Vilela D, Fernández-López A. What does apoptosis have to do with clinical features in myelodysplastic syndrome? Haematologica. 2002;87(4):381-91.
  23. Duarte FB, Gonçalves RP, Barbosa MC, Rocha Filho FD, de Jesus Dos Santos TE, Dos Santos TN, et al. Tumor suppressor p53 protein expression: prognostic significance in patients with low-risk myelodysplastic syndrome. Rev Bras Hematol Hemoter. 2014;36(3):196-201. [DOI:10.1016/j.bjhh.2014.03.007] [PMID] [PMCID]
  24. Saft L, Karimi M, Ghaderi M, Matolcsy A, Mufti GJ, Kulasekararaj A, et al. p53 protein expression independently predicts outcome in patients with lower-risk myelodysplastic syndromes with del (5q). Haematologica. 2014;99(6):1041. [DOI:10.3324/haematol.2013.098103] [PMID] [PMCID]
  25. Oliva EN, Latagliata R, Sabattini E, Mammì C, Cuzzola M, D'Errigo MG, et al. Accuracy of bone marrow histochemical TP53 expression compared to the detection of TP53 somatic mutations in patients with myelodysplastic syndromes harbouring a del5q cytogenetic abnormality. Am J Blood Res. 2021;11(4):417-26.
  26. Bektas O, Uner A, Buyukasik Y, Uz B, Bozkurt S, Eliacik E, et al. Clinical and pathological correlations of marrow PUMA and P53 expressions in myelodysplastic syndromes. Apmis. 2015;123(5):445-51. [DOI:10.1111/apm.12369] [PMID]
  27. Loghavi S, Al‐Ibraheemi A, Zuo Z, Garcia‐Manero G, Yabe M, Wang SA, et al. TP 53 overexpression is an independent adverse prognostic factor in de novo myelodysplastic syndromes with fibrosis. Br J Haematol. 2015;171(1):91-9. [DOI:10.1111/bjh.13529] [PMID] [PMCID]
  28. Cumbo C, Tota G, Anelli L, Zagaria A, Specchia G, Albano F. TP53 in myelodysplastic syndromes: recent biological and clinical findings. Int J Mol Sci. 2020;21(10):3432. [DOI:10.3390/ijms21103432] [PMID] [PMCID]
  29. Kamata H, Mitani S, Fujiwara M, Aoki N, Okada S, Mori S. Mutation of the p53 tumour suppressor gene and overexpression of its protein in 62 Japanese non-Hodgkin's lymphomas. Clin Exp Med. 2007;7(2):39-46. [DOI:10.1007/s10238-007-0124-0] [PMID]
  30. Chang H, Jiang AM, Qi CX. Aberrant nuclear p53 expression predicts hemizygous 17p (TP53) deletion in chronic lymphocytic leukemia. Am J Clin Pathol. 2010;133(1):70-4. [DOI:10.1309/AJCPEPX1C7HHFELK] [PMID]
  31. Chen M-H, Qi CX, Saha MN, Chang H. p53 nuclear expression correlates with hemizygous TP53 deletion and predicts an adverse outcome for patients with relapsed/refractory multiple myeloma treated with lenalidomide. Am J Clin Pathol. 2012;137(2):208-12. [DOI:10.1309/AJCPHC85DGAXZDBE] [PMID]
  32. McGraw KL, Nguyen J, Komrokji RS, Sallman D, Al Ali NH, Padron E, et al. Immunohistochemical pattern of p53 is a measure of TP53 mutation burden and adverse clinical outcome in myelodysplastic syndromes and secondary acute myeloid leukemia. Haematologica. 2016;101(8):e320. [DOI:10.3324/haematol.2016.143214] [PMID] [PMCID]
  33. Jädersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Göhring G, et al. TP53 mutations in low-risk myelodysplastic syndromes with del (5q) predict disease progression. J Clin Oncol. 2011;29(15). [DOI:10.1200/JCO.2010.31.8576] [PMID]
  34. Nenutil R, Smardova J, Pavlova S, Hanzelkova Z, Muller P, Fabian P, et al. Discriminating functional and non‐functional p53 in human tumours by p53 and MDM2 immunohistochemistry. J Pathol J Pathol Soc Gr Br Ireland. 2005;207(3):251-9. [DOI:10.1002/path.1838] [PMID]
  35. Mufti G, Stevens J, Oscier D, Hamblin T, Machin D. Myelodysplastic syndromes: a scoring system with prognostic significance. Br J Hematol. 1985;59(3):425-33. [DOI:10.1111/j.1365-2141.1985.tb07329.x] [PMID]
  36. Sanz GF, Sanz MA, Vallespi T, Canizo MC, Torrabadella M, Garcia S, et al. Two regression models and a scoring system for predicting survival and planning treatment in myelodysplastic syndromes: a multivariate analysis of prognostic factors in 370 patients. Blood. 1989. [DOI:10.1182/blood.V74.1.395.bloodjournal741395] [PMID]
  37. Morel P, Hebbar M, Lai J, Duhamel A, Preudhomme C, Wattel E, et al. Cytogenetic analysis has strong independent prognostic value in de novo myelodysplastic syndromes and can be incorporated in a new scoring system: a report on 408 cases. Leukemia. 1993;7(9):1315-23.
  38. Wu A, Gao P, Wu N, Shi C, Huang Z, Rong C, et al. Elevated mature monocytes in bone marrow accompanied with a higher IPSS-R score predicts a poor prognosis in myelodysplastic syndromes. BMC Cancer. 2021;21(1):1-7. [DOI:10.1186/s12885-021-08303-8] [PMID] [PMCID]
  39. Shi C, Gong S, Wu A, Yang S, Zou D, Zhang Y, et al. Decreased serum apolipoprotein A1 level predicts poor prognosis of patients with de novo myelodysplastic syndromes. BMC Cancer. 2022;22(1):1-9. [DOI:10.1186/s12885-022-09248-2] [PMID] [PMCID]
  40. Bellissimo DC, Speck NA. RUNX1 mutations in inherited and sporadic leukemia. Front Cell Dev Biol. 2017;5:111. [DOI:10.3389/fcell.2017.00111] [PMID] [PMCID]
  41. Girtovitis FI, Ntaios G, Papadopoulos A, Ioannidis G, Makris PE. Defective platelet aggregation in myelodysplastic syndromes. Acta Haematol. 2007;118(2):117-22. [DOI:10.1159/000107653] [PMID]
  42. Kawankar N, Rao Vundinti B. Cytogenetic abnormalities in myelodysplastic syndrome: an overview. Hematology. 2011;16(3):131-8. [DOI:10.1179/102453311X12940641877966] [PMID]
  43. Heim S. Chromosome abnormalities in the myelodysplastic syndromes. Clin Haematol. 1986;15:1003-21.
  44. Musilova J, Michalova K. Chromosome study of 85 patients with myelodysplastic syndrome. Cancer Genet Cytogenet. 1988;33(1):39-50. [DOI:10.1016/0165-4608(88)90048-9] [PMID]
  45. Nishiwaki S, Ito M, Watarai R, Okuno S, Harada Y, Yamamoto S, et al. A new prognostic index to make short-term prognoses in MDS patients treated with azacitidine: a combination of p53 expression and cytogenetics. Leuk Res. 2016;41:21-6. [DOI:10.1016/j.leukres.2015.11.014] [PMID]