Document Type : Original Research


1 Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt

2 Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Menoufia University, Egypt



Background & Objective: Colorectal carcinoma (CRC) is the third leading cause of cancer-caused death worldwide and constitutes about 6.48% of all malignancies in Egypt. Studying the molecular profile of CRC is essential for developing targeted therapies. STAT3 and CTLA4 expression are among the molecular abnormalities claimed to cause CRC progression and chemo-resistance. Therefore, they could be used as potential therapeutic targets. This study aimed to evaluate pSTAT3 and CTLA4 expression levels and their possible roles as prognostic and predictive biomarkers in CRC using immunohistochemistry (IHC).
Methods: This retrospective study included 113 CRC patients. Tissue microarrays were constructed, followed by pSTAT3 and CTLA4 antibodies immunostaining. Their expression was assessed and compared with clinicopathological parameters and survival data.
Results: Both pSTAT3 and CTLA4 overexpression were significantly associated with poor prognostic parameters, such as the presence of distant metastasis (P=0.02 & 0.03), high grade (P<0.001 & 0.03), high mitotic count (P<0.001 & 0.03), high tumor budding group (P=0.008 & 0.04), infiltrating tumor border (P<0.001 & 0.007) respectively, and advanced pathological stage with pSTAT3 (P=0.02). A significant association was found between overexpression of both markers and short overall survival. Correlations between the H-score of pSTAT3 and CTLA4 in CRC showed a significant positive correlation (P<0.001).
Conclusion: STAT3 and CTLA4 positivity have been linked to the development and progression of CRC, and they may provide potential prognostic indicators and therapeutic targets for CRC patients.


Main Subjects

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7-33. [DOI:10.3322/caac.21708] [PMID]
  2. Mokhtar N, Salama A, Badawy O, Khorshed E, Mohamed G, Ibrahim M, Abdelazim H. Cancer Pathology Registry A 12-year Registry 2000–2011. National Cancer Inst. 2016;13:192-208.
  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021 May;71(3):209-49 [DOI:10.3322/caac.21660] [PMID]
  4. Muller MF, Ibrahim AE, Arends MJ. Molecular pathological classification of colorectal cancer. Virchows Arch 2016 Aug;469(2):125-34 2016. [DOI:10.1007/s00428-016-1956-3] [PMID] []
  5. Singh MP, Rai S, Pandey A, Singh NK, Srivastava S. Molecular subtypes of colorectal cancer: An emerging therapeutic opportunity for personalized medicine. Genes Dis. 2020;8(2):133-45. [DOI:10.1016/j.gendis.2019.10.013] [PMID]
  6. Melo FDSE, Vermeulen L, Fessler E, Medema JP. Cancer heterogeneity- a multifaceted view. EMBO Rep. 2013;14(8):686-95. [DOI:10.1038/embor.2013.92] [PMID]
  7. Munro MJ, Wickremesekera SK, Peng L, Tan ST, Itinteang T. Cancer stem cells in colorectal cancer: a review. J Clin Pathol. 2017;71(2):110. [DOI:10.1136/jclinpath-2017-204739] [PMID]
  8. Song D, Guo M, Xu S, Song X, Bai B, Li Z, et al. HSP90-dependent PUS7 overexpression facilitates the metastasis of colorectal cancer cells by regulating LASP1 abundance. J Exp& Clin Cancer Res. 2021;40(1):170. [DOI:10.1186/s13046-021-01951-5] [PMID]
  9. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet 2019 Oct 19;394(10207):1467-80 [DOI:10.1016/S0140-6736(19)32319-0] [PMID]
  10. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020 Mar 20;5(1):22 [DOI:10.1038/s41392-020-0116-z] [PMID]
  11. Darnell JE, Jr. STATs and gene regulation. Science. 1997 Sep 12;277(5332):1630-5 [DOI:10.1126/science.277.5332.1630] [PMID]
  12. Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C, et al. The potential and controversy of targeting STAT family members in cancer. Seminars Cancer Biol. 2020;60:41-56. [DOI:10.1016/j.semcancer.2019.10.002] [PMID]
  13. Chatterjee M, Jain S, Stahmer T, Andrulis M, Ungetham U, Kuban R-Jr, et al. STAT3 and MAPK signaling maintain overexpression of heat shock proteins 90± and I² in multiple myeloma cells, which critically contribute to tumor-cell survival. Blood. 2007;109(2):720-8. [DOI:10.1182/blood-2006-05-024372] [PMID]
  14. Proietti CJ, Rosemblit C, Beguelin W, Rivas MA, DÃaz Flaquac MC, Charreau EH, et al. Activation of Stat3 by heregulin/ErbB-2 through the co-option of progesterone receptor signaling drives breast cancer growth. Mol Cell Biol 2009 Mar;29(5):1249-65 [DOI:10.1128/MCB.00853-08] [PMID]
  15. Corvinus FM, Orth C, Moriggl R, Tsareva SA, Wagner S, Pfitzner EB, et al. Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia. 2005 Jun;7(6):545-55 [DOI:10.1593/neo.04571] [PMID]
  16. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009 Feb 3;15(2):103-13 [DOI:10.1016/j.ccr.2009.01.001] [PMID]
  17. Xiong H, Zhang ZG, Tian XQ, Sun DF, Liang QC, Zhang YJ, et al. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia 2008 Mar;10(3):287-97 [DOI:10.1593/neo.07971] [PMID]
  18. Thilakasiri PS, Dmello RS, Nero TL, Parker MW, Ernst M, Chand AL. Repurposing of drugs as STAT3 inhibitors for cancer therapy. Semin Cancer Biol. 2021 Jan;68:31-46 [DOI:10.1016/j.semcancer.2019.09.022] [PMID]
  19. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015 Apr 13;27(4):450-61 [DOI:10.1016/j.ccell.2015.03.001] [PMID]
  20. Johansson H, Andersson R, Bauden M, Hammes S, Holdenrieder S, Ansari D. Immune checkpoint therapy for pancreatic cancer. World J Gastroenterol. 2016 Nov 21;22(43):9457-76 [DOI:10.3748/wjg.v22.i43.9457] [PMID]
  21. Narayanan V, Pavithra V, Dhanapal D, Sundaram S, Narayanan C. Role of CTLA4 immunohistochemistry in the diagnosis of colon cancers. Indian J Pathol Microbiol. 2022; 2022;65(4):791-5.
  22. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009 Jan;45(2):228-47 [DOI:10.1016/j.ejca.2008.10.026] [PMID]
  23. Lebwohl D, Kay A, Berg W, Baladi JF, Zheng J. Progression-free survival: gaining on overall survival as a gold standard and accelerating drug development. Cancer J. 2009 Sep-Oct;15(5):386-94 [DOI:10.1097/PPO.0b013e3181b9c5ec] [PMID]
  24. Kilickap S, Demirci U, Karadurmus N, Dogan M, Akinci B, Sendur MAN. Endpoints in oncology clinical trials. J Buon. 2018;23(7):1-6.
  25. Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology. 2020;76(2):182-8. [DOI:10.1111/his.13975] [PMID]
  26. Cho SJ, Kakar S. Tumor Budding in Colorectal Carcinoma: Translating a Morphologic Score Into Clinically Meaningful Results. Arch Pathol Lab Med. 2018;142(8):952-7. [DOI:10.5858/arpa.2018-0082-RA] [PMID]
  27. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J Clin. 2017 Mar;67(2):93-9. [DOI:10.3322/caac.21388] [PMID]
  28. Abdel-Rahman M, Agour A, El-Azab D. Tissue microarray as a research tool to study non-neoplastic liver diseases. Egyptian Liver J. 2014;4:69-74. [DOI:10.1097/01.ELX.0000451425.36015.99]
  29. Qin J, Yang B, Xu BQ, Smithc A, Xu L, Yuan JL, et al. Concurrent CD44s and STAT3 expression in human clear cell renal cellular carcinoma and its impact on survival. Int J Clin Exp Pathol. 2014 May 15;7(6):3235-44.
  30. Chang H, Jung W, Kim A, Kim HK, Kim WB, Kim JH, et al. Expression and prognostic significance of programmed death protein 1 and programmed death ligand-1, and cytotoxic T lymphocyte-associated molecule-4 in hepatocellular carcinoma. APMIS. 2017 Aug;125(8):690-8 [DOI:10.1111/apm.12703] [PMID]
  31. Numata M, Morinaga S, Watanabe T, Tamagawa H, Yamamoto N, Shiozawa M, et al. The clinical significance of SWI/SNF complex in pancreatic cancer. Int J Oncol. 2013 Feb;42(2):403-10 [DOI:10.3892/ijo.2012.1723] [PMID]
  32. Song L, Wang Y, Zhen Y, Li D, He X, Yang H, et al. Piperine inhibits colorectal cancer migration and invasion by regulating STAT3/Snail-mediated epithelialâ€"mesenchymal transition. Biotechnol Lett. 2020;42(10):2049-58. [DOI:10.1007/s10529-020-02923-z] [PMID]
  33. Ding H, Yu X, Yan Z. Ailanthone suppresses the activity of human colorectal cancer cells through the STAT3 signaling pathway. Int J Mol Med. 2021;49(2):21. [DOI:10.3892/ijmm.2021.5076] [PMID]
  34. Wei N, Li J, Fang C, Chang J, Xirou V, Syrigos NK, et al. Targeting colon cancer with the novel STAT3 inhibitor bruceantinol. Oncogene. 2019;38(10):1676-87. [DOI:10.1038/s41388-018-0547-y] [PMID]
  35. Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Targeting STAT3 Signaling Pathway in Colorectal Cancer. Biomedicines. 2021 Aug 15;9(8):1016. [DOI:10.3390/biomedicines9081016] [PMID]
  36. Wu P, Wu D, Zhao L, Huang L, Shen G, Huang J, et al. Prognostic role of STAT3 in solid tumors: a systematic review and meta-analysis. Oncotarget. 2016;7(15):19863-83. [DOI:10.18632/oncotarget.7887] [PMID]
  37. Shi S, Ma HY, Zhang ZG. Clinicopathological and prognostic value of STAT3/p-STAT3 in cervical cancer: A meta and bioinformatics analysis. Pathol Res Pract. 2021;227:153624. [DOI:10.1016/j.prp.2021.153624] [PMID]
  38. Kim WG, Choi HJ, Kim WB, Kim EY, Yim JH, Kim TY, et al. Basal STAT3 activities are negatively correlated with tumor size in papillary thyroid carcinomas. J Endocrinol Invest. 2012 Apr;35(4):413-8.
  39. Wang Y, Wang Q, Tang CH, Chen HD, Hu GN, Shao JK, et al. p-STAT3 expression in breast cancer correlates negatively with tumor size and HER2 status. Medicine. 2021 Mar 12;100(10):e25124 [DOI:10.1097/MD.0000000000025124] [PMID]
  40. Ji K, Zhang M, Chu Q, Gan Y, Ren H, Zhang L, et al. The role of p-STAT3 as a Prognostic and Clinicopathological Marker in Colorectal Cancer: A Systematic Review and Meta-Analysis. PLoS One. 2016;11(8):e0160125 [DOI:10.1371/journal.pone.0160125] [PMID]
  41. Morikawa T, Baba Y, Yamauchi M, Kuchiba A, Nosho K, Shima K, et al. STAT3 expression, molecular features, inflammation patterns, and prognosis in a database of 724 colorectal cancers. Clin Cancer Res. 2011;17(6):1452-62. [DOI:10.1158/1078-0432.CCR-10-2694] [PMID] []
  42. Kusaba T, Nakayama T, Yamazumi K, Yakata Y, Yoshizaki A, Inoue K, et al. Activation of STAT3 is a marker of poor prognosis in human colorectal cancer. Oncol Rep. 2006 Jun;15(6):1445-51. 2006. [DOI:10.3892/or.15.6.1445] [PMID]
  43. Li MX, Bi XY, Huang Z, Zhao JJ, Han Y, Li ZY, et al. Prognostic Role of Phospho-STAT3 in Patients with Cancers of the Digestive System: A Systematic Review and Meta-Analysis. PLoS One. 2015 May 29;10(5):e0127356 [DOI:10.1371/journal.pone.0127356] [PMID]
  44. Lorente D, Trilla E, Meseguer A, Arevalo J, Nemours S, Planas J, et al. The role of STAT3 protein as a prognostic factor in the clear cell renal carcinoma. Systematic review. Actas Urol Esp. 2019 Apr;43(3):118-23 [DOI:10.1016/j.acuroe.2019.02.006]
  45. Schust J, Sperl B, Hollis A, Mayer TU, Berg T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol. 2006 Nov;13(11):1235-42. [DOI:10.1016/j.chembiol.2006.09.018] [PMID]
  46. Goto M, Chamoto K, Higuchi K, Yamashita S, Noda K, Iino T, et al. Analytical performance of a new automated chemiluminescent magnetic immunoassays for soluble PD-1, PD-L1, and CTLA-4 in human plasma. Sci Rep 2019 Jul 12;9(1):10144 [DOI:10.1038/s41598-019-46548-3] [PMID]
  47. Omura Y, Toiyama Y, Okugawa Y, Yin C, Shigemori T, Kusunoki K, et al. Prognostic impacts of tumoral expression and serum levels of PD-L1 and CTLA-4 in colorectal cancer patients. Cancer Immunol Immunother. 2020;69(12):2533-46. [DOI:10.1007/s00262-020-02645-1] [PMID]
  48. Contardi E, Palmisano GL, Tazzari PL, Martelli AM, Falà F, Fabbi M, et al. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer. 2005 Nov 20;117(4):538-50. [DOI:10.1002/ijc.21155] [PMID]
  49. Hu P, Liu Q, Deng G, Zhang J, Liang N, Xie J, et al. The prognostic value of cytotoxic T-lymphocyte antigen 4 in cancers: a systematic review and meta-analysis. Sci Rep. 2017;7(1):42913. [DOI:10.1038/srep42913] [PMID]
  50. Liu F, Huang J, Liu X, Cheng Q, Luo C, Liu Z. CTLA-4 correlates with immune and clinical characteristics of glioma. Cancer Cell Int. 2020 Jan 6;20:7. [DOI:10.1186/s12935-019-1085-6] [PMID] []
  51. Zhang H, Dutta P, Liu J, Sabri N, Song Y, Li WX, et al. Tumour cell-intrinsic CTLA4 regulates PD-L1 expression in non-small cell lung cancer. J Cell Mol Med. 2019 Jan;23(1):535-42. [DOI:10.1111/jcmm.13956] [PMID]
  52. Salvi S, Fontana V, Boccardo S, Merlo DF, Margallo E, Laurent S, et al. Evaluation of CTLA-4 expression and relevance as a novel prognostic factor in patients with non-small cell lung cancer. Cancer Immunol Immunother. 2012 Sep;61(9):1463-72 [DOI:10.1007/s00262-012-1211-y] [PMID]
  53. Pignot Gr, Goux C, Sibony M, Vacher S, Longchamps N, Zerbib M, et al. mRNA expression levels and prognostic value of PD1/PDL1 and CTLA4 pathways genes in a large series of 155 bladder tumors. J Clin Oncol. 2016;34:4523. [DOI:10.1200/JCO.2016.34.15_suppl.4523]
  54. Santoni G, Amantini C, Morelli MB, Tomassoni D, Santoni M, Marinelli O, et al. High CTLA-4 expression correlates with poor prognosis in thymoma patients. Oncotarget. 2018 Mar 30;9(24):16665-77 [DOI:10.18632/oncotarget.24645] [PMID]
  55. Guntermann C, Alexander DR. CTLA-4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP-70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases. J Immunol. 2002 May 1;168(9):4420-9. [DOI:10.4049/jimmunol.168.9.4420] [PMID]
  56. Masuda A, Kamai T, Abe H, Arai K, Yoshida K. Is Stat3 and/or p53 mRNA expression a prognostic marker for renal cell carcinoma? Biomed Res. 2009 Jun;30(3):171-6 [DOI:10.2220/biomedres.30.171] [PMID]
  57. Zhang XF, Pan K, Weng DS, Chen CL, Wang QJ, Zhao JJ, et al. Cytotoxic T lymphocyte antigen-4 expression in esophageal carcinoma: implications for prognosis. Oncotarget. 2016 May 3;7(18):26670-9 [DOI:10.18632/oncotarget.8476] [PMID] []
  58. Yu H, Yang J, Jiao S, Li Y, Zhang W, Wang J. Cytotoxic T lymphocyte antigen 4 expression in human breast cancer: implications for prognosis. Cancer Immunol Immunother. 2015 Jul;64(7):853-60 [DOI:10.1007/s00262-015-1696-2] [PMID]
  59. Huang PY, Guo SS, Zhang Y, Lu JB, Chen QY, Tang LQ, et al. Tumor CTLA-4 overexpression predicts poor survival in patients with nasopharyngeal carcinoma. Oncotarget. 2016 Mar 15;7(11):13060-8 [DOI:10.18632/oncotarget.7421] [PMID]
  60. Hosseinkhani N, Derakhshani A, Kooshkaki O, Abdoli Shadbad M, Hajiasgharzadeh K, Baghbanzadeh A, et al. Immune Checkpoints and CAR-T Cells: The Pioneers in Future Cancer Therapies? Int J Mol Sci. 2020;21(21):8305 [DOI:10.3390/ijms21218305] [PMID]
  61. Derakhshani A, Hashemzadeh S, Asadzadeh Z, Shadbad MA, Rasibonab F, Safarpour H, et al. Cytotoxic T-Lymphocyte Antigen-4 in Colorectal Cancer: Another Therapeutic Side of Capecitabine. Cancers (Basel) 2021;13(10):2414 [DOI:10.3390/cancers13102414] [PMID]
  62. Toh JWT, de Souza P, Lim SH, Singh P, Chua W, Ng W, et al. The Potential Value of Immunotherapy in Colorectal Cancers: Review of the Evidence for Programmed Death-1 Inhibitor Therapy. Clin Colorectal Cancer. 2016;15(4):285-91. [DOI:10.1016/j.clcc.2016.07.007] [PMID]
  63. Jiao Q, Ren Y, Ariston Gabrie AN, Wang Q, Wang Y, Du L, et al. Advances of immune checkpoints in colorectal cancer treatment. Biomed Pharmacother. 2020;123:109745. [DOI:10.1016/j.biopha.2019.109745] [PMID]
  64. Heinz-Josef L, Sara L, Vittorina Z, Eric Van C, Limon ML, Ka Yeung Mark W, et al. Nivolumab (NIVO) + low-dose Ipilimumab (IPI) as first-line (1L) therapy in microsatellite instability-high/DNA mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): Clinical update. J Clin Oncol. 2020;37(15_suppl):3521-25. [DOI:10.1200/JCO.2019.37.15_suppl.3521]
  65. Herrmann A, Priceman J, Kujawski M, Xin H, Cherryholmes A, Zhang W, et al. CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. J Clin Invest. 2014; 124(7), 2977. [DOI:10.1172/JCI73174] [PMID]