Document Type : Review Article


1 Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran

2 B.Sc. of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran

3 Endoscopic and Minimally Invasive Surgery Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran



The effectiveness of immunotherapy for most cancer patients remains low, with approximately 10–30% of those treated surviving. Thus, much effort is being put into finding new ways to improve immune checkpoint therapy. Our review concludes that the inhibition of proprotein convertase subtilisin/Kexin type 9 (PCSK9), which plays a critical role in regulating cholesterol metabolism, can cause T cells to move toward tumors, with increased sensitivity to immune checkpoint therapies.
We searched PubMed, NCBI, Scopus, and Google Scholar for the published articles without limitations on publication dates. We used the following terms: “PCSK9”, “Cancer”, “Immune Checkpoint”, and “Cancer Prognosis” in the title and/or abstract. Our search initially revealed 600 records on the subject and stored them in the used databases under EndNote X8 management software. We selected about 161 articles that were carefully read and among them, 76 were included in our research.
We concluded that PCSK9 reduces the number of LDL receptors (LDL-R) on the cell surface, which is linked to its ability to regulate cholesterol levels in the body. Also, we discuss how suppressing PCSK9 leads to the MHC-1 accumulation on the surface of cancer cells, which results in T lymphocyte invasion. Finally, we believe that inhibiting PCSK9 may be an effective strategy for improving cancer immunotherapy.


Main Subjects

  1. Bhat M, Skill N, Marcus V, Deschenes M, Tan X, Bouteaud J, et al. Decreased PCSK9 expression in human hepatocellular carcinoma. BMC Gastroenterology. 2015;15(1):1-10. [DOI:10.1186/s12876-015-0371-6] [PMID]
  2. Catapano AL, Pirillo A, Norata GD. New pharmacological approaches to target PCSK9. Curr Atheroscler Rep. 2020;22(7):1-8. [DOI:10.1007/s11883-020-00847-7] [PMID]
  3. Bittner V. Pleiotropic effects of PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors? Circulation. 2016;134(22):1695-6. [DOI:10.1161/CIRCULATIONAHA.116.023687] [PMID]
  4. Cui C-J, Li S, Li J-J. PCSK9 and its modulation. Clin Chim Acta. 2015;440:79-86. [DOI:10.1016/j.cca.2014.10.044] [PMID]
  5. Yuan J, Cai T, Zheng X, Ren Y, Qi J, Lu X, et al. Potentiating CD8+ T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling. Protein Cell. 2021;12(4):240-60. [DOI:10.1007/s13238-021-00821-2] [PMID]
  6. Caruso S, Giudicissi R, Mariatti M, Cantafio S, Paroli GM, Scatizzi M. Laparoscopic vs. Open Gastrectomy for Locally Advanced Gastric Cancer: A Propensity Score-Matched Retrospective Case-Control Study. Curr Oncol. 2022;29(3):1840-65. [DOI:10.3390/curroncol29030151] [PMID]
  7. Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376(1):41-51. [DOI:10.1056/NEJMoa1609243] [PMID]
  8. Javid H, Karimi-Shahri M, Khorramdel M, Sathyapalan T, Afshari A, Sahebkar A. Probiotics as an adjuvant for management of gastrointestinal cancers through their anti-inflammatory effects: a mechanistic review. Curr Med Chem. 2022. [DOI:10.2174/0929867329666220511185745] [PMID]
  9. Karimi-Shahri M, Javid H, Yazdani S, Hashemy SI. Mesenchymal stem cells in cancer therapy; the art of harnessing a foe to a friend. Iran J Basic Med Sci. 2021;24(10):1307.
  10. Karimi-Shahri M, Khorramdel M, Zarei S, Attarian F, Hashemian P, Javid H. Glioblastoma, an opportunity T cell trafficking could bring for the treatment. Mol Biol Rep. 2022:1-13. [DOI:10.1007/s11033-022-07510-1] [PMID]
  11. Javid H, Ghahremanloo A, Afshari AR, Salek R, Hashemy SI. The Emerging Role of Neurokinin-1 Receptor Blockade Using Aprepitant in the Redox System of Esophageal Squamous Cell Carcinoma. Int J Pept Res Ther. 2022;28(3):1-13. [DOI:10.1007/s10989-022-10399-w]
  12. Rezaei S, Assaran Darban R, Javid H, Hashemy SI. The therapeutic potential of aprepitant in glioblastoma cancer cells through redox modification. BioMed Res Int. 2022;2022. [DOI:10.1155/2022/8540403] [PMID]
  13. Mehrabani N, Vaezi Kakhki MR, Javid H, Ebrahimi S, Hashemy SI. The SP/NK1R System-Mediated ROS Generation in GBM Cells through Inhibiting Glutaredoxin Protein. Neurol Res Int. 2021;2021. [DOI:10.1155/2021/9966000] [PMID]
  14. Xu Y, Poggio M, Jin HY, Shi Z, Forester CM, Wang Y, et al. Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat Med. 2019;25(2):301-11. [DOI:10.1038/s41591-018-0321-2] [PMID]
  15. Saleh R, Toor SM, Sasidharan Nair V, Elkord E. Role of epigenetic modifications in inhibitory immune checkpoints in cancer development and progression. Front Immunol. 2020;11:1469. [DOI:10.3389/fimmu.2020.01469] [PMID]
  16. Intlekofer AM, Thompson CB. At the bench: preclinical rationale for CTLA‐4 and PD‐1 blockade as cancer immunotherapy. J Leukoc Biol. 2013;94(1):25-39. [DOI:10.1189/jlb.1212621] [PMID]
  17. Ghosh C, Luong G, Sun Y. A snapshot of the PD-1/PD-L1 pathway. J Cancer. 2021;12(9):2735. [DOI:10.7150/jca.57334] [PMID]
  18. Mabeza RM, Lee C, Verma A, Park MG, Darbinian K, Darbinian S, et al. Factors and Outcomes Associated With Venous Thromboembolism Following Bariatric Surgery. Am Surg. 2022;88(10):2525-30. [DOI:10.1177/00031348221103645] [PMID]
  19. Ledford H. Melanoma drug wins US approval. Nature. 2011;471(7340):561. [DOI:10.1038/471561a] [PMID]
  20. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-64. [DOI:10.1038/nrc3239] [PMID]
  21. Delaunay M, Cadranel J, Lusque A, Meyer N, Gounant V, Moro-Sibilot D, et al. Immune-checkpoint inhibitors associated with interstitial lung disease in cancer patients. Eur Respir J. 2017;50(2).
  22. Webb ES, Liu P, Baleeiro R, Lemoine NR, Yuan M, Wang Y. Immune checkpoint inhibitors in cancer therapy. J Biomed Res. 2018;32(5):317. [DOI:10.7555/JBR.31.20160168] [PMID]
  23. Liu X, Bao X, Hu M, Chang H, Jiao M, Cheng J, et al. PCSK9 inhibition potentiates cancer immune checkpoint therapy. Nature. 2020;588(7839):693. [DOI:10.1038/s41586-020-2911-7] [PMID]
  24. Chaudhary R, Garg J, Shah N, Sumner A. PCSK9 inhibitors: a new era of lipid lowering therapy. World J Cardiol. 2017;9(2):76. [DOI:10.4330/wjc.v9.i2.76] [PMID]
  25. Giugliano RP, Sabatine MS. Are PCSK9 inhibitors the next breakthrough in the cardiovascular field? J Am College Cardiol. 2015;65(24):2638-51. [DOI:10.1016/j.jacc.2015.05.001] [PMID]
  26. Alannan M, Seidah NG, Merched AJ. PCSK9 in Liver Cancers at the Crossroads between Lipid Metabolism and Immunity. Cells. 2022;11(24):4132. [DOI:10.3390/cells11244132] [PMID]
  27. Athavale D, Chouhan S, Pandey V, Mayengbam SS, Singh S, Bhat MK. Hepatocellular carcinoma-associated hypercholesterolemia: involvement of proprotein-convertase-subtilisin-kexin type-9 (PCSK9). Cancer Metabol. 2018;6(1):1-16. [DOI:10.1186/s40170-018-0187-2] [PMID]
  28. He M, Hu J, Fang T, Tang W, Lv B, Yang B, et al. Protein convertase subtilisin/Kexin type 9 inhibits hepatocellular carcinoma growth by interacting with GSTP1 and suppressing the JNK signaling pathway. Cancer Biol Med. 2022;19(1):90. [DOI:10.20892/j.issn.2095-3941.2020.0313] [PMID]
  29. Bonaventura A, Vecchié A, Ruscica M, Grossi F, Dentali F. PCSK9 as a new player in cancer: New opportunity or red herring? Curr Med Chem. 2022;29(6):960-9. [DOI:10.2174/0929867328666211115122324] [PMID]
  30. Zhang S-Z, Zhu X-D, Feng L-H, Li X-L, Liu X-F, Sun H-C, et al. PCSK9 promotes tumor growth by inhibiting tumor cell apoptosis in hepatocellular carcinoma. Exp Hematol Oncol. 2021;10(1):1-11. [DOI:10.1186/s40164-021-00218-1] [PMID]
  31. Athavale D, Chouhan S, Pandey V, Mayengbam SS, Singh S, Bhat MK. Hepatocellular carcinoma-associated hypercholesterolemia: involvement of proprotein-convertase-subtilisin-kexin type-9 (PCSK9). Cancer Metabol. 2018;6:1-16. [DOI:10.1186/s40170-018-0187-2] [PMID]
  32. Bhattacharya A, Chowdhury A, Chaudhury K, Shukla PC. Proprotein convertase subtilisin/kexin type 9 (PCSK9): A potential multifaceted player in cancer. Biochim Biophys Acta (BBA)-Rev Cancer. 2021;1876(1):188581. [DOI:10.1016/j.bbcan.2021.188581] [PMID]
  33. Ruscica M, Ferri N, Macchi C, Meroni M, Lanti C, Ricci C, et al. Liver fat accumulation is associated with circulating PCSK9. Ann Med. 2016;48(5):384-91. [DOI:10.1080/07853890.2016.1188328] [PMID]
  34. Alannan M, Trézéguet V, Amoêdo ND, Rossignol R, Mahfouf W, Rezvani HR, et al. Rewiring Lipid Metabolism by Targeting PCSK9 and HMGCR to Treat Liver Cancer. Cancers. 2022;15(1):3. [DOI:10.3390/cancers15010003] [PMID] []
  35. Paquette M, Gauthier D, Chamberland A, Prat A, Rolfe EDL, Rasmussen JJ, et al. Circulating PCSK9 is associated with liver biomarkers and hepatic steatosis. Clin Biochem. 2020;77:20-5. [DOI:10.1016/j.clinbiochem.2020.01.003] [PMID]
  36. Ragusa R, Basta G, Neglia D, De Caterina R, Del Turco S, Caselli C. PCSK9 and atherosclerosis: Looking beyond LDL regulation. Eur J Clin Invest. 2021;51(4):e13459. [DOI:10.1111/eci.13459] [PMID]
  37. Feder S, Wiest R, Weiss TS, Aslanidis C, Schacherer D, Krautbauer S, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) levels are not associated with severity of liver disease and are inversely related to cholesterol in a cohort of thirty eight patients with liver cirrhosis. Lipids Health Dis. 2021;20:1-14. [DOI:10.1186/s12944-021-01431-x] [PMID]
  38. Mahboobnia K, Pirro M, Marini E, Grignani F, Bezsonov EE, Jamialahmadi T, et al. PCSK9 and cancer: Rethinking the link. Biomed Pharmacother. 2021;140:111758. [DOI:10.1016/j.biopha.2021.111758] [PMID]
  39. Bonaventura A, Grossi F, Carbone F, Vecchié A, Minetti S, Bardi N, et al. Serum PCSK9 levels at the second nivolumab cycle predict overall survival in elderly patients with NSCLC: a pilot study. Cancer Immunol Immunother. 2019;68(8):1351-8. [DOI:10.1007/s00262-019-02367-z] [PMID]
  40. Xie M, Yu X, Chu X, Xie H, Zhou J, Zhao J, et al. Low baseline plasma PCSK9 level is associated with good clinical outcomes of immune checkpoint inhibitors in advanced non‐small cell lung cancer. Thoracic Cancer. 2022;13(3):353-60. [DOI:10.1111/1759-7714.14259] [PMID]
  41. Luo X, Xu JG, Wang Z, Wang X, Zhu Q, Zhao J, et al. Bioinformatics identification of key genes for the development and prognosis of lung adenocarcinoma. INQUIRY: J Health Care Organization Provis Financing. 2022;59:00469580221096259. [DOI:10.1177/00469580221096259] [PMID]
  42. Sun Y-S, Zhao Z, Yang Z-N, Xu F, Lu H-J, Zhu Z-Y, et al. Risk factors and preventions of breast cancer. Int J Biol Sci. 2017;13(11):1387. [DOI:10.7150/ijbs.21635] [PMID]
  43. Momtazi-Borojeni AA, Nik ME, Jaafari MR, Banach M, Sahebkar A. Effects of immunization against PCSK9 in an experimental model of breast cancer. Arch Med Sci. 2019;15(3):570-9. [DOI:10.5114/aoms.2019.84734] [PMID]
  44. Momtazi-Borojeni AA, Nik ME, Jaafari MR, Banach M, Sahebkar A. Effects of immunization against PCSK9 in an experimental model of breast cancer. Arch Med Sci. 2019;15(3):570. [DOI:10.5114/aoms.2019.84734] [PMID]
  45. Shah FD, Shukla SN, Shah PM, Patel HR, Patel PS. Significance of alterations in plasma lipid profile levels in breast cancer. Integr Cancer Ther. 2008;7(1):33-41. [DOI:10.1177/1534735407313883] [PMID]
  46. Wong Chong E, Joncas F-H, Seidah NG, Calon F, Diorio C, Gangloff A. Circulating levels of PCSK9, ANGPTL3 and Lp (a) in stage III breast cancers. BMC Cancer. 2022;22(1):1-12. [DOI:10.1186/s12885-022-10120-6] [PMID]
  47. Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019;10(2):63. [DOI:10.14740/wjon1191] [PMID]
  48. Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol. 2019;10(1):10. [DOI:10.14740/wjon1166] [PMID]
  49. Ng ACT, Delgado V, Borlaug BA, Bax JJ. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol. 2021;18(4):291-304. [DOI:10.1038/s41569-020-00465-5] [PMID]
  50. Gan S-S, Ye J-Q, Wang L, Qu F-J, Chu C-M, Tian Y-J, et al. Inhibition of PCSK9 protects against radiation-induced damage of prostate cancer cells. OncoTarg Ther. 2017;10:2139. [DOI:10.2147/OTT.S129413] [PMID]
  51. Fang S, Yarmolinsky J, Gill D, Bull CJ, Perks CM, Consortium P, et al. Association between genetically proxied PCSK9 inhibition and prostate cancer risk: A Mendelian randomisation study. Plos Med. 2023;20(1):e1003988. [DOI:10.1371/journal.pmed.1003988] [PMID]
  52. Abdelwahed KS, Siddique AB, Qusa MH, King JA, Souid S, Abd Elmageed ZY, et al. PCSK9 Axis-targeting pseurotin A as a novel prostate cancer recurrence suppressor lead. ACS Pharmacol Transl Sci. 2021;4(6):1771-81. [DOI:10.1021/acsptsci.1c00145] [PMID]
  53. Liu X, Bao X, Hu M, Chang H, Jiao M, Cheng J, et al. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature. 2020;588(7839):693-8. [DOI:10.1038/s41586-020-2911-7] [PMID]
  54. Almeida CR, Ferreira BH, Duarte IF. Targeting PCSK9: a promising adjuvant strategy in cancer immunotherapy. Signal Transduct Target Ther. 2021;6(1):111. [DOI:10.1038/s41392-021-00530-6] [PMID]
  55. Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29-39. [DOI:10.1016/j.intimp.2018.06.001] [PMID]
  56. Crunkhorn S. Blocking PCSK9 enhances immune checkpoint therapy. Nat Rev Drug Discov. 2021;20(1):20-1. [DOI:10.1038/d41573-020-00208-8]
  57. Volpe M, Patrono C. PCSK9 inhibition: Not just LDL-Cholesterol knock down: A glimmer for cancer. Eur Heart J. 2021. [DOI:10.1093/eurheartj/ehab047] [PMID]
  58. Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y, et al. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Target Ther. 2022;7(1):39. [DOI:10.1038/s41392-021-00868-x] [PMID]
  59. Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223-49. [DOI:10.1146/annurev-pathol-042020-042741] [PMID]
  60. He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30(8):660-9. [DOI:10.1038/s41422-020-0343-4] [PMID]
  61. Armand P, Lesokhin A, Borrello I, Timmerman J, Gutierrez M, Zhu L, et al. A phase 1b study of dual PD-1 and CTLA-4 or KIR blockade in patients with relapsed/refractory lymphoid malignancies. Leukemia. 2021;35(3):777-86. [DOI:10.1038/s41375-020-0939-1] [PMID]
  62. Bewersdorf JP, Shallis RM, Zeidan AM. Immune checkpoint inhibition in myeloid malignancies: Moving beyond the PD-1/PD-L1 and CTLA-4 pathways. Blood Rev. 2021;45:100709. [DOI:10.1016/j.blre.2020.100709] [PMID]
  63. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33(17):1974. [DOI:10.1200/JCO.2014.59.4358] [PMID]
  64. Erdogdu IH. MHC class 1 and PDL-1 status of primary tumor and lymph node metastatic tumor tissue in gastric cancers. Gastroenterol Res Pract. 2019;2019:4785098. [DOI:10.1155/2019/4785098] [PMID]
  65. Kahlmeyer A, Stöhr CG, Hartmann A, Goebell PJ, Wullich B, Wach S, et al. Expression of PD-1 and CTLA-4 are negative prognostic markers in renal cell carcinoma. J Clin Med. 2019;8(5):743. [DOI:10.3390/jcm8050743] [PMID]
  66. Hutarew G. PD-L1 testing, fit for routine evaluation? From a patholo gist's point of view. Memo – Mag Eur Med Oncol. 2016;9(4):201-6. [DOI:10.1007/s12254-016-0292-2] [PMID]
  67. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443-54. [DOI:10.1056/NEJMoa1200690] [PMID]
  68. Chen Y-S, Shen C-R. Immune checkpoint blockade therapy: the 2014 Tang Prize in Biopharmaceutical Science. Biomed J. 2015;38(1):5-8. [DOI:10.4103/2319-4170.151150] [PMID]
  69. Wolchok JD, Hodi FS, Weber JS, Allison JP, Urba WJ, Robert C, et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann the New York Acad Sci. 2013;1291(1):1-13. [DOI:10.1111/nyas.12180] [PMID]
  70. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991-8. [DOI:10.1038/ni1102-991] [PMID]
  71. Patrono C, Volpe M. PCSK9 inhibition: Not just LDL-Cholesterol knock down: A glimmer for cancer. Oxford University Press; 2021. [DOI:10.1093/eurheartj/ehab047] [PMID]
  72. Mittal AK, Chaturvedi NK, Rohlfsen RA, Gupta P, Joshi AD, Hegde GV, et al. Role of CTLA4 in the proliferation and survival of chronic lymphocytic leukemia. PloS One. 2013;8(8):e70352. [DOI:10.1371/journal.pone.0070352] [PMID]
  73. Zhang Q, Chikina M, Szymczak-Workman AL, Horne W, Kolls JK, Vignali KM, et al. LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. Science Immunol. 2017;2(9). [DOI:10.1126/sciimmunol.aah4569] [PMID]
  74. Liu Z, Xiang C, Han M, Meng N, Luo J, Fu R. Study on Tim3 Regulation of Multiple Myeloma Cell Proliferation via NF-κB Signal Pathways. Frontiers Oncol. 2020;10:584530. [DOI:10.3389/fonc.2020.584530] [PMID]
  75. Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, et al. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol. 2011;186(3):1338-42. [DOI:10.4049/jimmunol.1003081] [PMID]
  76. Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol. 2003;4(7):670-9. [DOI:10.1038/ni944] [PMID]