Document Type : Original Research

Authors

Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

10.30699/ijp.2022.538238.2713

Abstract

Background & Objective: It is noteworthy that vast data links NETs to human arterial thrombosis. In the current study, extracellular neutrophil networks and macrophage polarization were assessed in the area outside and inside the Carotid artery stenosis.
Methods: The sample of Carotid plaque of the patient was divided into two halves with a transverse incision; the terms inner part and outer part were used for the plaque's inner part and the adjacent area. Samples were sorted in 10% formalin for CD163, CD11c, MPO, and histone H3 immunohistochemistry assessment, while part of the sample was stored at -80°C for western blotting assay with PDA4 marker.
Results: Results of this study showed that the extracellular neutrophil in the inner part of the Carotid plaque was significantly increased (P<0.0001), while the number of M1 and M2 macrophages was higher in the inner part compared with the outer part of the Carotid plaque (P<0.0001).

Keywords

Main Subjects

  1. Skagen K, Skjelland M, Zamani M, Russell D. Unstable carotid artery plaque: new insights and controversies in diagnostics and treatment. Croat Med J. 2016;57(4):311-20. [PMID] [PMCID] [DOI:10.3325/cmj.2016.57.311]
  2. Insull Jr W. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am J Med. 2009;122(1):S3-S14. [DOI:10.1016/j.amjmed.2008.10.013] [PMID]
  3. Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood. 2014;123(18):2768-76. [PMCID] [DOI:10.1182/blood-2013-10-463646] [PMID]
  4. Delgado-Rizo V, Martinez-Guzman MA, Iniguez-Gutierrez L, Garcia-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front Immunol. 2017;8:81. [DOI:10.3389/fimmu.2017.00081] [PMID] [PMCID]
  5. Lacolley P, Regnault V, Segers P, Laurent S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev. 2017;97(4):1555-617. [DOI:10.1152/physrev.00003.2017] [PMID]
  6. Sigala F, Oikonomou E, Antonopoulos AS, Galyfos G, Tousoulis D. Coronary versus carotid artery plaques. Similarities and differences regarding biomarkers morphology and prognosis. Curr Opin Pharmacol. 2018;39:9-18. [DOI:10.1016/j.coph.2017.11.010] [PMID]
  7. Sternberg Z, Ghanim H, Gillotti KM, Tario JD, Jr., Munschauer F, Curl R, et al. Flow cytometry and gene expression profiling of immune cells of the carotid plaque and peripheral blood. Atherosclerosis. 2013;229(2):338-47. [PMID] [DOI:10.1016/j.atherosclerosis.2013.04.035]
  8. Cho KY, Miyoshi H, Kuroda S, Yasuda H, Kamiyama K, Nakagawara J, et al. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid J Stroke Cerebrovasc Dis. 2013;22(7):910-8. [DOI:10.1016/j.jstrokecerebrovasdis.2012.11.020] [PMID]
  9. Grønholdt M-LM. Ultrasound and lipoproteins as predictors of lipid-rich, rupture-prone plaques in the carotid artery. Arterioscler Thromb Vasc Biol. 1999;19(1):2-13. [DOI:10.1161/01.ATV.19.1.2] [PMID]
  10. Hofbauer TM, Ondracek AS, Lang IM. Neutrophil Extracellular Traps in Atherosclerosis and Thrombosis. 2020. [DOI:10.1007/164_2020_409] [PMID]
  11. Moschonas IC, Tselepis AD. The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis. Atherosclerosis. 2019; 288:9-16. [PMID] [DOI:10.1016/j.atherosclerosis.2019.06.919]
  12. Katakami N. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. J Atheroscler Thromb. 2018;25(1):27-39. [DOI:10.5551/jat.RV17014] [PMID] [PMCID]
  13. Palmer O. Non-Invasive Venous Thrombus Composition and Therapeutic Response by Multiparametric MRI 2019.
  14. Nakagawa K, Nakashima Y. Pathologic intimal thickening in human atherosclerosis is formed by extracellular accumulation of plasma-derived lipids and dispersion of intimal smooth muscle cells. Atherosclerosis. 2018;274:235-42. [DOI:10.1016/j.atherosclerosis.2018.03.039] [PMID]
  15. Peled M, Fisher EA. Dynamic Aspects of Macrophage Polarization during Atherosclerosis Progression and Regression. Front Immunol. 2014;5:579. [DOI:10.3389/fimmu.2014.00579] [PMID] [PMCID]
  16. de Gaetano M, Crean D, Barry M, Belton O. M1- and M2-Type Macrophage Responses Are Predictive of Adverse Outcomes in Human Atherosclerosis. Front Immunol. 2016;7:275. [DOI:10.3389/fimmu.2016.00275] [PMID] [PMCID]
  17. Stöger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA, et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012;225(2):461-8. [PMID] [DOI:10.1016/j.atherosclerosis.2012.09.013]
  18. Shiomi M, Yamada S, Ito T. Atheroma stabilizing effects of simvastatin due to depression of macrophages or lipid accumulation in the atheromatous plaques of coronary plaque-prone WHHL rabbits. Atherosclerosis. 2005;178(2): 287-94. [DOI:10.1016/j.atherosclerosis.2004.10.024] [PMID]
  19. Psaltis PJ, Puranik AS, Spoon DB, Chue CD, Hoffman SJ, Witt TA, et al. Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature. Circ Res. 2014;115(3):364-75. [PMID] [DOI:10.1161/CIRCRESAHA.115.303299]
  20. Tinajero MG, Gotlieb AI. Recent developments in vascular adventitial pathobiology: the dynamic adventitia as a complex regulator of vascular disease. Am J Pathol. 2020;190(3):520-34. [DOI:10.1016/j.ajpath.2019.10.021] [PMID]
  21. Rouhanizadeh M, Takabe W, Ai L, Yu H, Hsiai T. Monitoring oxidative stress in vascular endothelial cells in response to fluid shear stress: from biochemical analyses to micro- and nanotechnologies. Methods Enzymol. 2008;441: 111-50. [DOI:10.1016/S0076-6879(08)01207-X]
  22. Chen FH, Chiang CS, Wang CC, Tsai CS, Jung SM, Lee CC, et al. Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin Cancer Res. 2009;15(5):1721-9. [DOI:10.1158/1078-0432.CCR-08-1471] [PMID] [PMCID]
  23. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327-87. [DOI:10.1152/physrev.00047.2009] [PMID] [PMCID]
  24. Daemen MJ, Ferguson MS, Gijsen FJ, Hippe DS, Kooi ME, Demarco K, et al. Carotid plaque fissure: An underestimated source of intraplaque hemorrhage. Atherosclerosis. 2016;254:102-8. [DOI:10.1016/j.atherosclerosis.2016.09.069] [PMID] [PMCID]
  25. Fousert E, Toes R, Desai J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells. 2020;9(4):915. [DOI:10.3390/cells9040915] [PMID] [PMCID]
  26. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852-66. [PMID] [DOI:10.1161/CIRCRESAHA.114.302721]
  27. Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017;12:18-34. [PMCID] [DOI:10.1016/j.redox.2017.01.007] [PMID]
  28. Knight JS, Subramanian V, O'Dell AA, Yalavarthi S, Zhao W, Smith CK, et al. Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann Rheum Dis. 2015;74(12):2199-206. [DOI:10.1136/annrheumdis-2014-205365] [PMID] [PMCID]
  29. Knight JS, Luo W, O'Dell AA, Yalavarthi S, Zhao W, Subramanian V, et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res. 2014;114(6):947-56. [PMID] [PMCID] [DOI:10.1161/CIRCRESAHA.114.303312]
  30. Glunt KD, Coetzee M, Huijben S, Koffi AA, Lynch PA, N'Guessan R, et al. Empirical and theoretical investigation into the potential impacts of insecticide resistance on the effectiveness of insecticide‐treated bed nets. Evol Appl. 2018;11(4):431-41. [DOI:10.1111/eva.12574] [PMID] [PMCID]