Document Type : Original Research


1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

2 Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran

3 Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran


Background & Objective: This study aims to isolate a lytic bacteriophage against planktonic Enterococcus faecalis V583 culture and evaluate its ability to disrupt and inhibit biofilm.
Methods: An anti-E. faecalis phage was isolated from sewage and visualized by electron microscopy, the vB_EfsS_V583 (V583) host range was determined by spot test on 13 E. faecalis clinical strains. Inhibition and degradation experiments were designed to investigate the effect of phage on biofilm. In the inhibition and degradation assay, biofilms were formed in the presence and absence of phage, respectively. Finally, crystal violet method tested the effect of phage on biofilm.
Results: Phage V583 belongs to the Siphoviridae family and can infect all E. faecalis strains. Antibacterial activity has been shown to degrade and inhibit biofilm produced by V583. The study results showed that phage v583 is more efficient in biofilm inhibition than biofilm degradation. In both assays, phage-treated wells' absorption is less than untreated wells. These results were confirmed by Colony-forming unit reduction in the treated biofilm.
Conclusion: The anti-biofilm activity showed that phage therapy using phage V583 might be an alternative tool to remove E. faecalis biofilms.


Main Subjects

  1. Laws M, Shaaban A, Rahman KM. Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol. Rev. 2019;43(5): 490-516. [DOI:10.1093/femsre/fuz014] [PMID] [PMCID]
  2. Subramaniam G, Girish M. Antibiotic resistance-a cause for reemergence of infections. Indian J. Pediatr. 2020:1-8. [DOI:10.1007/s12098-019-03180-3] [PMID]
  3. Tagliaferri TL, Jansen M, Horz H-P. Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front. Cell. Infect. Microbiol. 2019;9:22. [PMID] [PMCID] [DOI:10.3389/fcimb.2019.00022]
  4. Khatoon Z, McTiernan CD, Suuronen EJ, Mah T-F, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4(12): e01067.[DOI:10.1016/j.heliyon.2018.e01067] [PMID] [PMCID]
  5. Blackledge MS, Worthington RJ, Melander C. Biologically inspired strategies for combating bacterial biofilms. Curr Opin. 2013;13(5):699-706. [DOI:10.1016/j.coph.2013.07.004] [PMID] [PMCID]
  6. Mohamed JA, Huang DB. Biofilm formation by enterococci. J. Med. Microbiol. 2007;56(12): 1581-8. [DOI:10.1099/jmm.0.47331-0] [PMID]
  7. Lebeaux D, Ghigo J-M, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510-43. [PMID] [PMCID] [DOI:10.1128/MMBR.00013-14]
  8. Limoli DH, Jones CJ, Wozniak DJ. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microbiol Spectr. 2015 Jun;3(3):10.1128/microbiolspec.MB-0011-2014. [DOI:10.1128/microbiolspec.MB-0011-2014] [PMID] [PMCID]
  9. Donlan RM. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis. 2001;33(8):1387-92. [DOI:10.1086/322972] [PMID]
  10. D'Andrea MM, Frezza D, Romano E, Marmo P, De Angelis LH, Perini N, et al. The lytic bacteriophage vB_EfaH_EF1TV, a new member of the Herelleviridae family, disrupts biofilm produced by Enterococcus faecalis clinical strains. J Glob Antimicrob Resist. 2020;21:68-75. [DOI:10.1016/j.jgar.2019.10.019] [PMID]
  11. Tinoco JM, Buttaro B, Zhang H, Liss N, Sassone L, Stevens R. Effect of a genetically engineered bacteriophage on Enterococcus faecalis biofilms. Arch. Oral Biol. 2016;71:80-6. [PMID] [PMCID] [DOI:10.1016/j.archoralbio.2016.07.001]
  12. Azeredo J, Sutherland IW. The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol. 2008;9(4):261-6. [DOI:10.2174/138920108785161604] [PMID]
  13. Abedon ST. Ecology of anti-biofilm agents I: antibiotics versus bacteriophages. Pharma-ceuticals. 2015;8(3):525-58. [DOI:10.3390/ph8030525] [PMID] [PMCID]
  14. Principi N, Silvestri E, Esposito S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol. 2019;10: 513. [DOI:10.3389/fphar.2019.00513] [PMID] [PMCID]
  15. Gutiérrez D, Rodríguez-Rubio L, Martínez B, Rodríguez A, García P. Bacteriophages as weapons against bacterial biofilms in the food industry. Front Microbiol. 2016;7:825. [DOI:10.3389/fmicb.2016.00825]
  16. Kamal F, Dennis JJ. Burkholderia cepacia complex phage-antibiotic synergy (PAS): antibiotics stimulate lytic phage activity. Appl. Environ Microbiol. 2015;81(3):1132-8. [DOI:10.1128/AEM.02850-14] [PMID] [PMCID]
  17. Coulter LB, McLean RJ, Rohde RE, Aron GM. Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Viruses. 2014;6(10):3778-86. [DOI:10.3390/v6103778] [PMID] [PMCID]
  18. Sattari-Maraji A, Jabalameli F, Farahani NN, Beigverdi R, Emaneini M. Antimicrobial resistance pattern, virulence determinants and molecular analysis of Enterococcus faecium isolated from children infections in Iran. BMC microbiol. 2019;19(1):1-8. [DOI:10.1186/s12866-019-1539-y] [PMID] [PMCID]
  19. Clinical and Laboratory Standards Institute [CLSI] (2017). Performance Standards for Antimicrobial Susceptibility Testing M02-A12 M-A aM-A, 27th Ed, Philadelphia, PA: Clinical and Laboratory Standards Institute.
  20. Talebi M, Pourshafiei MR, Oskouei M, Eshraghi SS. Molecular analysis of vanHAX element in vancomycin resistant enterococci isolated from hospitalized patients in Tehran. Iran Biomed J 2008;12:223-228. [DOI:10.1016/j.ijid.2008.05.961]
  21. Goodarzi F, Hallajzadeh M, Sholeh M, Talebi M, Mahabadi VP, Amirmozafari N. Biological characteristics and anti-biofilm activity of a lytic phage against vancomycin-resistant Enterococcus faecium. Iran J Microbiol. 2021;13(5):691-702. [DOI:10.18502/ijm.v13i5.7436] [PMID] [PMCID]
  22. Zade M, Mojtahedi A, Amirmozafari N, Mahabadi VP. Characterizing a lytic bacteriophage infecting methicillin-resistant Staphylococcus aureus (MRSA) isolated from burn patients. Arch Clin. Infect. Dis. 2020;15(1). [DOI:10.5812/archcid.91634]
  23. Kutter E. Phage host range and efficiency of plating. Methods Mol Biol. 2009;501:141-9. [DOI:10.1007/978-1-60327-164-6_14] [PMID]
  24. Kumar L, Cox CR, Sarkar SK. Matrix metalloprotease-1 inhibits and disrupts Enterococcus faecalis biofilms. PLoS One. 2019; 14(1):e0210218. [PMID] [PMCID] [DOI:10.1371/journal.pone.0210218]
  25. Parasion S, Kwiatek M, Mizak L, Gryko R, Bartoszcze M, Kocik J. Isolation and characterization of a novel bacteriophage φ4D lytic against Enterococcus faecalis strains. Curr. Microbiol. 2012;65(3):284-9. [DOI:10.1007/s00284-012-0158-8] [PMID]
  26. Khalifa L, Brosh Y, Gelman D, Coppenhagen-Glazer S, Beyth S, Poradosu-Cohen R, et al. Targeting Enterococcus faecalis biofilms with phage therapy. Appl. Environ. Microbiol. 2015; 81(8):2696-705. [DOI:10.1128/AEM.00096-15] [PMID] [PMCID]
  27. Zhang W, Mi Z, Yin X, Fan H, An X, Zhang Z, et al. Characterization of Enterococcus faecalis phage IME-EF1 and its endolysin. PloS one. 2013;8(11):e80435. [PMID] [PMCID] [DOI:10.1371/journal.pone.0080435]
  28. Moghimbeigi A, Moghimbeygi M, Dousti M, Kiani F, Sayehmiri F, Sadeghifard N, et al. Prevalence of vancomycin resistance among isolates of enterococci in Iran: a systematic review and meta-analysis. Adolesc. Health Med Ther. 2018;9:177. [DOI:10.2147/AHMT.S180489] [PMID] [PMCID]
  29. Rahimi F, Talebi M, Saifi M, Pourshafie MR. Distribution of enterococcal species and detection of vancomycin resistance genes by multiplex PCR in Tehran sewage. Iran Biomed J. 2007;11(3):161-167. [PMID]
  30. Khalifa L, Coppenhagen-Glazer S, Shlezinger M, Kott-Gutkowski M, Adini O, Beyth N, et al. Complete genome sequence of Enterococcus bacteriophage EFLK1. Genome Announc. 2015;3(6):e01308-15. [PMID] [PMCID] [DOI:10.1128/genomeA.01308-15]
  31. Salisbury AM, Woo K, Sarkar S, Schultz G, Malone M, Mayer DO, Percival SL. Tolerance of Biofilms to Antimicrobials and Significance to Antibiotic Resistance in Wounds. Surg Technol Int. 2018;33:59-66. [PMID]
  32. Lewis K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 2001;45(4):999-1007. [DOI:10.1128/AAC.45.4.999-1007.2001] [PMID] [PMCID]
  33. Hall CW, Mah T-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41(3):276-301. [DOI:10.1093/femsre/fux010] [PMID]
  34. Kaur P, Sachan R S K, Karnwal A, Devgon I. A Review on Clinical Manifestation and Treatment Regimens of UTI in Diabetic Patients. Iran J Med Microbiol. 2022; 16 (2) :98-115. [DOI: 30699/ijmm.16.2.98]
  35. Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ. Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomon-as aeruginosa biofilms. Appl Environ. Microbiol. 2001;67(6):2746-53. [PMCID] [PMID] [DOI:10.1128/AEM.67.6.2746-2753.2001]
  36. Chen C, Krishnan V, Macon K, Manne K, Narayana SV, Schneewind O. Secreted proteases control autolysin-mediated biofilm growth of Staphylococcus aureus. J Bio Chem. 2013;288 (41):29440-52. [DOI:10.1074/jbc.M113.502039] [PMID] [PMCID]
  37. Pires D, Sillankorva S, Faustino A, Azeredo J. Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Res Microbiol. 2011;162(8):798-806. [DOI:10.1016/j.resmic.2011.06.010] [PMID]
  38. Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Agents Chemother. 2010;54(1):397-404. [DOI:10.1128/AAC.00669-09] [PMID] [PMCID]
  39. Sillankorva S, Neubauer P, Azeredo J. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol. 2008;8 (1):1-12. [DOI:10.1186/1472-6750-8-79] [PMID] [PMCID]
  40. Capparelli R, Nocerino N, Iannaccone M, Ercolini D, Parlato M, Chiara M, et al. Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. J. Infect. Dis. 2010;201 (1):52-61. [DOI:10.1086/648478] [PMID]
  41. Parasion S, Kwiatek M, Gryko R, Mizak L, Malm A. Bacteriophages as an alternative strategy for fighting biofilm development. Pol. J. Microbiol. 2014;63(2):137. [DOI:10.33073/pjm-2014-019] [PMID]
  42. Bøhle LA, Riaz T, Egge-Jacobsen W, Skaugen M, Busk ØL, Eijsink VG, et al. Identification of surface proteins in Enterococcus faecalis V583. BMC Genet. 2011;12(1):1-14. [PMID] [PMCID] [DOI:10.1186/1471-2164-12-135]
  43. Szafrański SP, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms. J. Biotechnol. 2017;250:29-44. [DOI:10.1016/j.jbiotec.2017.01.002] [PMID]
  44. Shlezinger M, Friedman M, Houri-Haddad Y, Hazan R, Beyth N. Phages in a thermoreversible sustained-release formulation targeting E. faecalis in vitro and in vivo. PLoS One. 2019;14(7): e0219599. [DOI:10.1371/journal.pone.0219599] [PMID] [PMCID]