Document Type : Review Article

Authors

1 Baqiyatallah Research Center for gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran

2 Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

3 Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.

4 Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran

5 Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran

10.30699/ijp.2022.541483.2755

Abstract

Background & Objective: Multiple sclerosis (MS) is an inflammatory neurological disorder that affects the central nervous system (CNS) and causes individuals to experience a variety of cognitive and physical problems. As proven by two decades of clinical experience with immunomodulatory therapies for MS, the disease progresses and relapses through several immunological pathways. New medicines aimed at remyelination and neurodegeneration are being developed; however, they need stronger evidence before being introduced into routine clinical care. The purpose of this study was a thorough assessment of MS immunopathology and predictive biomarkers.
Methods: Immunotherapy, immunopathogenesis, and prognostic biomarkers were all parts of the search method. Only publications in English were considered for inclusion in the study. For that purpose, we went through the current state of knowledge around MS immunopathology and related biomarkers. Immunology, as well as the identification of increased inflammation as an important component of neurodegeneration, shaped our understanding of this disease aetiology. The relevant sources examined covered the years 2015-2021.
Conclusion: We found biomarkers in the cerebrospinal fluid and blood that might be used for the prediction and diagnosis of MS, as well as for measuring treatment response and adverse effects. Many variables, including the role of some infectious organisms and the impact of environmental and social factors, might contribute to the immunological dysfunctions seen in MS. Patients with MS may benefit from better therapy options if a better understanding of MS biomarkers and immune response mechanisms would be obtained. 

Keywords

Main Subjects

  1. Du Z, Holme P. Coupling the circadian rhythms of population movement and the immune system in infectious disease modeling. Plos one. 2020;15(6):e0234619. [DOI:10.1371/journal.pone.0234619] [PMID] [PMCID]
  2. Romagnani S. Immunological tolerance and autoimmunity. Intern Emerg Med. 2006;1(3):187-96. [DOI:10.1007/BF02934736] [PMID]
  3. Höftberger R, Guo Y, Flanagan EP, Lopez-Chiriboga AS, Endmayr V, Hochmeister S, Joldic D, Pittock SJ, Tillema JM, Gorman M, Lassmann H, Lucchinetti CF. The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol. 2020;139(5):875-92. [DOI:10.1007/s00401-020-02132-y] [PMID] [PMCID]
  4. Dobson R, Giovannoni G. Multiple sclerosis-a review. Eur J Neurol. 2019;26(1):27-40. [DOI:10.1111/ene.13819] [PMID]
  5. Faissner S, Plemel JR, Gold R, Yong VW. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat Rev Drug Discov. 2019;18(12):905-22. [DOI:10.1038/s41573-019-0035-2] [PMID]
  6. Voet S, Prinz M, van Loo G. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Neurosci. 2019;25(2):112-23. [DOI:10.1016/j.molmed.2018.11.005] [PMID]
  7. Lombardo SD, Mazzon E, Basile MS, Campo G, Corsico F, Presti M, Bramanti P, Mangano K, Petralia MC, Nicoletti F, Fagone P. Modulation of tetraspanin 32 (TSPAN32) expression in T cell-mediated immune responses and in multiple sclerosis. Int J Mol Sci. 2019;20(18):4323. [DOI:10.3390/ijms20184323] [PMID] [PMCID]
  8. Saberi A, Akhondzadeh S, Kazemi S. Infectious agents and different course of multiple sclerosis: a systematic review. Acta Neurologica Belgica. 2018;118(3):361-77. [DOI:10.1007/s13760-018-0976-y] [PMID]
  9. Gianfrancesco MA, Stridh P, Shao X, Rhead B, Graves JS, Chitnis T, Waldman A, Lotze T, Schreiner T, Belman A, Greenberg B. Genetic risk factors for pediatric-onset multiple sclerosis. Mult Scler. 2018;24(14):1825-34. [DOI:10.1177/1352458517733551] [PMID] [PMCID]
  10. Alfredsson L, Olsson T. Lifestyle and environmental factors in multiple sclerosis. Cold Spring Harb Perspect. 2019;9(4):a028944. [DOI:10.1101/cshperspect.a028944] [PMID] [PMCID]
  11. Jelcic I, Al Nimer F, Wang J, Lentsch V, Planas R, Jelcic I, Madjovski A, Ruhrmann S, Faigle W, Frauenknecht K, Pinilla C. Memory B cells activate brain-homing, autoreactive CD4+ T cells in multiple sclerosis. Cell. 2018;175(1):85-100. [DOI:10.1016/j.cell.2018.08.011] [PMID] [PMCID]
  12. Pröbstel AK, Baranzini SE. The role of the gut microbiome in multiple sclerosis risk and progression: towards characterization of the "MS microbiome". Neurotherapeutics. 2018;15(1):126-34. [DOI:10.1007/s13311-017-0587-y] [PMID] [PMCID]
  13. Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple sclerosis: mechanisms and immunotherapy. Neuron. 2018;97(4):742-68. [DOI:10.1016/j.neuron.2018.01.021] [PMID]
  14. Planas R, Santos R, Tomas-Ojer P, Cruciani C, Lutterotti A, Faigle W, Schaeren-Wiemers N, Espejo C, Eixarch H, Pinilla C, Martin R. GDP-l-fucose synthase is a CD4+ T cell-specific autoantigen in DRB3* 02: 02 patients with multiple sclerosis. Sci Transl Med. 2018;10(462). [DOI:10.1126/scitranslmed.aat4301] [PMID]
  15. Luchetti S, Fransen NL, van Eden CG, Ramaglia V, Mason M, Huitinga I. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta neuropathologica. 2018;135(4):511-28. [DOI:10.1007/s00401-018-1818-y] [PMID] [PMCID]
  16. .Cohen JA, Baldassari LE, Atkins HL, et al. Autologous hematopoietic cell transplantation for treatment-refractory relapsing multiple sclerosis: position statement from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2019;25(5):845-54. [DOI:10.1016/j.bbmt.2019.02.014] [PMID]
  17. Parks NE, Flanagan EP, Lucchinetti CF, et al. NEDA treatment target? No evident disease activity as an actionable outcome in practice. J Neurol Sci 2017; 383:31-4. [DOI:10.1016/j.jns.2017.10.015] [PMID]
  18. Ontaneda D, Tallantyre E, Kalincik T, et al. Early highly effective versus escalation treatment approaches in relapsing multiple sclerosis. Lancet Neurol 2019;18(10): 973-80. [DOI:10.1016/S1474-4422(19)30151-6]
  19. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018;17(2):162-73. [DOI:10.1016/S1474-4422(17)30470-2]
  20. Andersen O, Elovaara I, Farkkila M, et al. Multicentre, randomised, double blind, placebo controlled, phase III study of weekly, low dose, subcutaneous interferon beta-1a in secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2004;75(5):706-10. [DOI:10.1136/jnnp.2003.010090] [PMID] [PMCID]
  21. Secondary progressive efficacy clinical trial of recombinant interferon-beta-1a in MSSG. Randomized controlled trial of interferon- beta-1a in secondary progressive MS: clinical results. Neurology 2001;56(11):1496-504. [DOI:10.1212/WNL.56.11.1496] [PMID]
  22. Rossi B, Santos-Lima B, Terrabuio E, Zenaro E, Constantin G. Common Peripheral Immunity Mechanisms in Multiple Sclerosis and Alzheimer's Disease. Front immunol. 2021 Feb 19;12:404. [DOI:10.3389/fimmu.2021.639369] [PMID] [PMCID]
  23. Lückel C, Picard F, Raifer H, Carrascosa LC, Guralnik A, Zhang Y, Klein M, Bittner S, Steffen F, Moos S, Marini F. IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nat Commun. 2019 Dec 16;10(1):1-5. [DOI:10.1038/s41467-019-13731-z] [PMID] [PMCID]
  24. Pompura SL, Wagner A, Kitz A, LaPerche J, Yosef N, Dominguez-Villar M, Hafler DA. Oleic acid restores suppressive defects in tissue-resident FOXP3 Tregs from patients with multiple sclerosis. J Clin Investig J CLIN INVEST. 2021 Jan 19;131(2). [DOI:10.1172/JCI138519] [PMID] [PMCID]
  25. Kunkl M, Sambucci M, Ruggieri S, Amormino C, Tortorella C, Gasperini C, Battistini L, Tuosto L. CD28 autonomous signaling up-regulates c-myc expression and promotes glycolysis enabling inflammatory T cell responses in multiple sclerosis. Cells. 2019;8(6):575. [DOI:10.3390/cells8060575] [PMID] [PMCID]
  26. Kaskow BJ, Baecher-Allan C. Effector T cells in multiple sclerosis. Cold Spring Harb Perspect. 2018;8(4):a029025. [DOI:10.1101/cshperspect.a029025] [PMID] [PMCID]
  27. Ogawa K, Okuno T, Hosomichi K, Hosokawa A, Hirata J, Suzuki K, Sakaue S, Kinoshita M, Asano Y, Miyamoto K, Inoue I. Next-generation sequencing identifies contribution of both class I and II HLA genes on susceptibility of multiple sclerosis in Japanese. J Neuroinflammation. 2019;16(1):1-9. [DOI:10.1186/s12974-019-1551-z] [PMID] [PMCID]
  28. Fiedler SE, Spain RI, Kim E, Salinthone S. Lipoic acid modulates inflammatory responses of monocytes and monocyte‐derived macrophages from healthy and relapsing‐remitting multiple sclerosis patients. Immunol Cell Biol. 2021;99(1):107-15. [DOI:10.1111/imcb.12392] [PMID]
  29. Ramaglia V, Rojas O, Naouar I, Gommerman JL. The Ins and outs of central nervous system inflammation-lessons learned from multiple sclerosis. Annu Rev Immunol. 2021;39:199-226. [DOI:10.1146/annurev-immunol-093019-124155] [PMID]
  30. Dziedzic A, Morel A, Miller E, Bijak M, Sliwinski T, Synowiec E, Ceremuga M, Saluk-Bijak J. Oxidative Damage of Blood Platelets Correlates with the Degree of Psychophysical Disability in Secondary Progressive Multiple Sclerosis. Oxid Med Cell Longev. 2020;2020. [DOI:10.1155/2020/2868014] [PMID] [PMCID]
  31. Weiner HL, Hafler DA. Immunotherapy of multiple sclerosis. Ann Neurol. 1988 Mar;23(3):211-22. [DOI:10.1002/ana.410230302] [PMID]
  32. Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple sclerosis: mechanisms and immunotherapy. Neuron. 2018;97(4):742-68. [DOI:10.1016/j.neuron.2018.01.021] [PMID]
  33. Fleischer V. Translational Aspects of Immunotherapeutic Targets in Multiple Sclerosis. InTranslational Methods for Multiple Sclerosis Research 2021 (pp. 287-301). Humana, New York, NY. [DOI:10.1007/978-1-0716-1213-2_19]
  34. Harris VK, Tuddenham JF, Sadiq SA. Biomarkers of multiple sclerosis: current findings. Degener Neurol Neuromuscul Dis. 2017;7:19. [DOI:10.2147/DNND.S98936] [PMID] [PMCID]
  35. Ferreira HB, Melo T, Monteiro A, Paiva A, Domingues P, Domingues MR. Serum phospholipidomics reveals altered lipid profile and promising biomarkers in multiple sclerosis. Arch Biochem Biophys Arch Biochem Biophys. 2021;697:108672. [DOI:10.1016/j.abb.2020.108672] [PMID]
  36. Mezzaroba L, Oliveira SR, Flauzino T, Alfieri DF, Pereira WL, Kallaur AP, Lozovoy MA, Kaimen-Maciel DR, Maes M, Reiche EM. Antioxidant and anti-inflammatory diagnostic biomarkers in multiple sclerosis: a machine learning study. Mol Neurobiol. 2020:1-2. [DOI:10.1007/s12035-019-01856-7] [PMID]
  37. Brettschneider J, Tumani H, Kiechle U, Muche R, Richards G, Lehmensiek V, Ludolph AC, Otto M. IgG antibodies against measles, rubella, and varicella zoster virus predict conversion to multiple sclerosis in clinically isolated syndrome. PLoS One. 2009 Nov 5;4(11):e7638. [DOI:10.1371/journal.pone.0007638] [PMID] [PMCID]
  38. Katsavos S, Anagnostouli M. Biomarkers in Multiple Sclerosis: An Up-to-Date Overview. Mult Scler Int. 2013;2013:340508. [DOI:10.1155/2013/340508] [PMID] [PMCID]
  39. Ostendorf L, Dittert P, Biesen R, Duchow A, Stiglbauer V, Ruprecht K, Bellmann-Strobl J, Seelow D, Stenzel W, Niesner RA, Hauser AE. SIGLEC1 (CD169): a marker of active neuroinflammation in the brain but not in the blood of multiple sclerosis patients. Sci Rep. 2021;11(1):1-8. [DOI:10.1038/s41598-021-89786-0] [PMID] [PMCID]
  40. Satue M, Obis J, Rodrigo MJ, Otin S, Fuertes MI, Vilades E, Gracia H, Ara JR, Alarcia R, Polo V, Larrosa JM, Pablo LE, Garcia-Martin E. Optical Coherence Tomography as a Biomarker for Diagnosis, Progression, and Prognosis of Neurodegenerative Diseases. J Ophthalmol. 2016;2016:8503859. [DOI:10.1155/2016/8503859] [PMID] [PMCID]
  41. Makshakov G, Nazarov V, Kochetova O, Surkova E, Lapin S, Evdoshenko E. Diagnostic and Prognostic Value of the Cerebrospinal Fluid Concentration of Immunoglobulin Free Light Chains in Clinically Isolated Syndrome with Conversion to Multiple Sclerosis. PLoS One. 2015 Nov 25;10(11):e0143375. [DOI:10.1371/journal.pone.0143375] [PMID] [PMCID]
  42. El-Abd Ahmed A, Sakhr HM, Hassan MH, El-Amir MI, Ameen HH. Vitamin D receptor rs7975232, rs731236 and rs1544410 single nucleotide polymorphisms, and 25-hydroxyvitamin D levels in Egyptian children with type 1 diabetes mellitus: effect of vitamin D co-therapy. Diabetes Metab Syndr Obes.: Targets Ther. 2019;12:703. [DOI:10.2147/DMSO.S201525] [PMID] [PMCID]
  43. Ayrignac X, Carra-Dallière C, Labauge P. Diagnostic and therapeutic issues of inflammatory diseases of the elderly. Revue neurologique. 2020 Apr 17. [DOI:10.1016/j.neurol.2020.03.014] [PMID]
  44. Hollen CW, Paz Soldán MM, Rinker JR 2nd, Spain RI. The Future of Progressive Multiple Sclerosis Therapies. Fed Pract. 2020;37(Suppl 1):S43-S49.
  45. Fitzner D, Simons M. Chronic progressive multiple sclerosis - pathogenesis of neurodegeneration and therapeutic strategies. Curr Neuropharmacol. 2010;8(3):305-15. [DOI:10.2174/157015910792246218] [PMID] [PMCID]
  46. Florou D, Katsara M, Feehan J, Dardiotis E, Apostolopoulos V. Anti-CD20 Agents for Multiple Sclerosis: Spotlight on Ocrelizumab and Ofatumumab. Brain Sci. 2020;10(10):758. [DOI:10.3390/brainsci10100758] [PMID] [PMCID]