Document Type : Original Research

Authors

1 Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran

2 Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran

3 Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran

4 Department of Pathology, Khatam Al Anbia Hospital, Tehran, Iran

5 Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran

Abstract

Background & Objective: Cell surface expression of sortilin in different types of cancer signifies it as a therapeutic target for cancer therapy. The aim of this study was to detect sortilin expression in bladder cancer cells using an anti-sortilin monoclonal antibody (mAb) to evaluate sortilin as a target for developing diagnostic and therapeutic agents against bladder carcinoma.
Methods: The protein expression of sortilin in bladder cancer tissues and cell lines (5637 and EJ138) was investigated by immunohistochemistry (IHC), immune-cytochemistry (ICC), and flow cytometry. Furthermore, the capability of anti-sortilin mAb in apoptosis induction in bladder cancer cells was evaluated.
Results: A high expression level was observed in bladder carcinoma tissues (P≤0.001) and cell lines, using IHC and ICC, respectively. Flow cytometry results showed cell surface expression of 27.5±3% (P≤0.01), 74.4±7.8% (P≤0.001), and 4.2±0.4% of sortilin in EJ138, 5637, and HFFF cells, respectively. In EJ138 anti-sortilin mAb induced apoptosis in 25.2±11.5% (P≤0.05) (early) and 4.5±1.1% (P>0.05) (late) after 6 h incubation, while for 12 h, the values of 11.6±3.8% (P>0.05) and 20.7±4.4% (P≤0.05) were achieved. In 5637 cells, 6 h incubation resulted in 10.2±0.3% (P>0.05) and 6.6±1.4% (P>0.05) apoptosis induction, while these values were 12.1±0.8% (P>0.05) and 27.4±4.5% (P≤0.01) after 12 h. The HFFF cells did not show significant apoptosis.
Conclusion: The overexpression of sortilin in bladder tumor cells and its potential in inducing apoptosis via directed targeting with the specific monoclonal antibody may represent this protein as a potential candidate of targeted therapy in bladder carcinoma.

Highlights

  • A high level of sortilin expression was observed in primary bladder carcinoma tissues and cell lines in comparison with the normal bladder tissues and normal cell line
  • Anti-sortilin mAb induced apoptosis in EJ138 and 5637 bladder cancer cells without any significant effect on the normal control cell line
  • Sortilin may represent a potential candidate for targeted therapy in patients with bladder carcinoma

Keywords

Main Subjects

  1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pineros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International journal of cancer. 2019;144(8):1941-53. [DOI:10.1002/ijc.31937] [PMID]
  2. Kamat AM HN, Efstathiou JA, Lerner SP, Malmstrom PU, Choi W. Bladder cancer. Lancet (London, England). 2016;388(10061):2796-810. [DOI:10.1016/S0140-6736(16)30512-8]
  3. Pasin E, Josephson DY, Mitra AP, Cote RJ, Stein JP. Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Reviews in urology. 2008;10(1):31-43.
  4. Spiess PE, Agarwal N, Bangs R, Boorjian SA, Buyyounouski MK, Clark PE, et al. Bladder Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network : JNCCN. 2017;15(10):1240-67. [DOI:10.6004/jnccn.2017.0156] [PMID]
  5. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nature reviews Cancer. 2012; 12(4):278-87. [DOI:10.1038/nrc3236] [PMID]
  6. Cruz E, Kayser V. Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biologics: targets & therapy. 2019;13:33-51. [DOI:10.2147/BTT.S166310] [PMID] [PMCID]
  7. Marrocco I, Romaniello D, Yarden Y. Cancer Immunotherapy: The Dawn of Antibody Cocktails. Methods in molecular biology (Clifton, NJ). 2019;1904:11-51. [DOI:10.1007/978-1-4939-8958-4_2] [PMID]
  8. ZHOU L-l, WANG X-s. Overview of prostate-specific membrane antigen. Anhui Cheml Ind. 2010:01.
  9. Sadaf A, Rahman MZ, Bhattacharjee P, Ahamad MSU, Nasreen S. Significance of Vascular Endothelial Growth Factor Expression in the Bladder Urothelial Carcinoma and Its Association with Tumor Grade and Invasiveness. Iran J Pathol. 2021;16(4):362-9. [PMID] [PMCID] [DOI:10.30699/ijp.2021.138671.2518]
  10. Kouzegaran S, Siroosbakht S, Farsad BF, Rezakhaniha B, Dormanesh B, Behnod V, et al. Elevated IL-17A and IL-22 regulate expression of inducible CD38 and Zap-70 in chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2018;94(1):143-7. [DOI:10.1002/cyto.b.21487] [PMID]
  11. Nykjaer A, Willnow TE. Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci. 2012;35(4):261-70. [DOI:10.1016/j.tins.2012.01.003] [PMID]
  12. Strong A, Rader DJ. Sortilin as a regulator of lipoprotein metabolism. Curr Atheroscler Rep. 2012;14(3):211-8. [DOI:10.1007/s11883-012-0248-x] [PMID] [PMCID]
  13. Larsen JV, Hermey G, Sorensen ES, Prabakaran T, Christensen EI, Gliemann J, et al. Human sorCS1 binds sortilin and hampers its cellular functions. Biochem J. 2014;457(2):277-88. [DOI:10.1042/BJ20130386] [PMID]
  14. Tanimoto R, Morcavallo A, Terracciano M, Xu SQ, Stefanello M, Buraschi S, et al. Sortilin regulates progranulin action in castration-resistant prostate cancer cells. Endocrinology. 2015;156 (1):58-70. [DOI:10.1210/en.2014-1590] [PMID] [PMCID]
  15. Pan X, Zaarur N, Singh M, Morin P, Kandror KV. Sortilin and retromer mediate retrograde transport of Glut4 in 3T3-L1 adipocytes. Mol Biol Cell. 2017;28(12):1667-75. [DOI:10.1091/mbc.e16-11-0777] [PMID] [PMCID]
  16. Petersen CM, Nielsen MS, Nykjaer A, Jacobsen L, Tommerup N, Rasmussen HH, et al. Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. J Biol Chem. 1997;272(6):3599-605. [DOI:10.1074/jbc.272.6.3599] [PMID]
  17. Hermey G. The Vps10p-domain receptor family. Cell Mol Life Sci. 2009;66(16):2677-89. [DOI:10.1007/s00018-009-0043-1] [PMID]
  18. Roselli S, Pundavela J, Demont Y, Faulkner S, Keene S, Attia J, et al. Sortilin is associated with breast cancer aggressiveness and contributes to tumor cell adhesion and invasion. Oncotarget. 2015;6(12):10473. [PMID] [PMCID] [DOI:10.18632/oncotarget.3401]
  19. Faulkner S, Jobling P, Rowe CW, Rodrigues Oliveira SM, Roselli S, Thorne RF, et al. Neurotrophin Receptors TrkA, p75(NTR), and Sortilin Are Increased and Targetable in Thyroid Cancer. Am J Pathol. 2018;188(1):229-41. [DOI:10.1016/j.ajpath.2017.09.008] [PMID]
  20. Kim JT, Napier DL, Weiss HL, Lee EY, Townsend Jr CM, Evers BM. Neurotensin receptor 3/sortilin contributes to tumorigenesis of neuroendocrine tumors through augmentation of cell adhesion and migration. Neoplasia. 2018;20(2):175-81. [PMID] [PMCID] [DOI:10.1016/j.neo.2017.11.012]
  21. Ghods R, Ghahremani MH, Darzi M, Mahmoudi AR, Yeganeh O, Bayat AA, et al. Immunohistochemical characterization of novel murine monoclonal antibodies against human placenta-specific 1. Biotechnol Appl Biochem. 2014;61(3):363-9. [DOI:10.1002/bab.1177] [PMID]
  22. Wilson CM, Naves T, Al Akhrass H, Vincent F, Melloni B, Bonnaud F, et al. A new role under sortilin's belt in cancer. Commun Integr Biol. 2016;9(1):e1130192. [DOI:10.1080/19420889.2015.1130192] [PMID] [PMCID]
  23. Ghaemimanesh F, Bayat AA, Babaei S, Ahmadian G, Zarnani AH, Behmanesh M, et al. Production and Characterization of a Novel Monoclonal Antibody Against Human Sortilin. Monoclonal antibodies in immunodiagnosis and immunotherapy. 2015;34(6):390-5. [DOI:10.1089/mab.2015.0042] [PMID] [PMCID]
  24. Bayat AA, Ghods R, Shabani M, Mahmoudi AR, Yeganeh O, Hassannia H, et al. Production and Characterization of Monoclonal Antibodies against Human Prostate Specific Antigen. Avicenna J Med Biotechnol. 2015;7(1):2-7.
  25. Ghaemimanesh F, Ahmadian G, Talebi S, Zarnani AH, Behmanesh M, Hemmati S, et al. The effect of sortilin silencing on ovarian carcinoma cells. Avicenna J Med Biotechnol. 2014;6(3):169-77.
  26. Reyes N, Benedetti I, Bettin A, Rebollo J, Geliebter J. The small leucine rich proteoglycan fibromodulin is overexpressed in human prostate epithelial cancer cell lines in culture and human prostate cancer tissue. Cancer Biomarkers. 2016;16(1):191-202. [DOI:10.3233/CBM-150555] [PMID]
  27. Tsai Y-C, Tsai T-H, Chang C-P, Chen S-F, Lee Y-M, Shyue S-K. Linear correlation between average fluorescence intensity of green fluorescent protein and the multiplicity of infection of recombinant adenovirus. J Biomed Sci. 2015;22(1):1-9. [DOI:10.1186/s12929-015-0137-z] [PMID] [PMCID]
  28. Norouzi S, Norouzi M, Amini M, Amanzadeh A, Nabiuni M, Irian S, et al. Two COX-2 inhibitors induce apoptosis in human erythroleukemia K562cells by modulating NF-κB and FHC pathways. DARU J Pharmal Sci. 2016;24(1):1-9. [DOI:10.1186/s40199-015-0139-0] [PMID] [PMCID]
  29. Batista R, Vinagre N, Meireles S, Vinagre J, Prazeres H, Leao R, et al. Biomarkers for Bladder Cancer Diagnosis and Surveillance: A Comprehensive Review. Diagnostics (Basel, Switzerland). 2020;10(1). [PMCID] [DOI:10.3390/diagnostics10010039] [PMID]
  30. Boggild S, Molgaard S, Glerup S, Nyengaard JR. Spatiotemporal patterns of sortilin and SorCS2 localization during organ development. BMC Cell Biol. 2016;17(1):8. [DOI:10.1186/s12860-016-0085-9] [PMID] [PMCID]
  31. Cabello MJ, Grau L, Franco N, Orenes E, Alvarez M, Blanca A, et al. Multiplexed methylation profiles of tumor suppressor genes in bladder cancer. J Mol Diagn. 2011;13(1):29-40. [PMCID] [DOI:10.1016/j.jmoldx.2010.11.008] [PMID]
  32. Yang W, Wu P-f, Ma J-x, Liao M-j, Wang X-h, Xu L-s, et al. Sortilin promotes glioblastoma invasion and mesenchymal transition through GSK-3β/β-catenin/twist pathway. Cell Death Dis. 2019;10(3):1-15. [DOI:10.1038/s41419-019-1449-9] [PMID] [PMCID]
  33. Kim T, Hempstead BL. NRH2 is a trafficking switch to regulate sortilin localization and permit proneurotrophin‐induced cell death. EMBO J. 2009;28(11):1612-23. [PMID] [PMCID] [DOI:10.1038/emboj.2009.118]
  34. Strong A, Patel K, Rader DJ. Sortilin and lipoprotein metabolism: making sense out of complexity. Curr Opin Lipidol. 2014;25(5):350-7. [DOI:10.1097/MOL.0000000000000110] [PMID] [PMCID]
  35. Demont Y, Corbet C, Page A, Ataman-Önal Y, Choquet-Kastylevsky G, Fliniaux I, et al. Pro-nerve growth factor induces autocrine stimulation of breast cancer cell invasion through tropomyosin-related kinase A (TrkA) and sortilin protein. J Bioll Chem. 2012;287(3):1923-31. [DOI:10.1074/jbc.M110.211714] [PMID] [PMCID]
  36. Rhost S, Hughes E, Harrison H, Rafnsdottir S, Jacobsson H, Gregersson P, et al. Sortilin inhibition limits secretion-induced progranulin-dependent breast cancer progression and cancer stem cell expansion. Breast cancer research : BCR. 2018;20(1):137. [DOI:10.1186/s13058-018-1060-5] [PMID] [PMCID]
  37. Hemmati S, Zarnani AH, Mahmoudi AR, Sadeghi MR, Soltanghoraee H, Akhondi MM, et al. Ectopic Expression of Sortilin 1 (NTR-3) in Patients with Ovarian Carcinoma. Avicenna J Med Biotechnol. 2009;1(2):125-31.
  38. Akil H, Perraud A, Melin C, Jauberteau MO, Mathonnet M. Fine-tuning roles of endogenous brain-derived neurotrophic factor, TrkB and sortilin in colorectal cancer cell survival. PLoS One. 2011;6(9):e25097. [PMID] [PMCID] [DOI:10.1371/journal.pone.0025097]
  39. Farahi L, Ghaemimanesh F, Milani S, Razavi SM, Akhondi MM, Rabbani H. Sortilin as a Novel Diagnostic and Therapeutic Biomarker in Chronic Lymphocytic Leukemia. Avicenna J Med Biotechnol. 2019;11(4):270.
  40. Fauchais AL, Lalloue F, Lise MC, Boumediene A, Preud'homme JL, Vidal E, et al. Role of endogenous brain-derived neurotrophic factor and sortilin in B cell survival. J Immunol. 2008; 181 (5):3027-38. [DOI:10.4049/jimmunol.181.5.3027] [PMID]
  41. Ludwig DL, Pereira DS, Zhu Z, Hicklin DJ, Bohlen P. Monoclonal antibody therapeutics and apoptosis. Oncogene. 2003;22(56):9097-106. [DOI:10.1038/sj.onc.1207104] [PMID]
  42. Nguyen C, Pandey S. Exploiting Mitochondrial Vulnerabilities to Trigger Apoptosis Selectively in Cancer Cells. Cancers (Basel). 2019;11(7):916. [DOI:10.3390/cancers11070916] [PMID] [PMCID]
  43. Dal Farra C, Sarret P, Navarro V, Botto JM, Mazella J, Vincent JP. Involvement of the neurotensin receptor subtype NTR3 in the growth effect of neurotensin on cancer cell lines. International journal of cancer. 2001;92(4):503-9. [DOI:10.1002/ijc.1225] [PMID]
  44. Massa F, Tormo A, Beraud-Dufour S, Coppola T, Mazella J. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation. Biochem Biophys Res Commun. 2011;414(1):118-22. [DOI:10.1016/j.bbrc.2011.09.034] [PMID]
  45. Martin S, Vincent JP, Mazella J. Involvement of the neurotensin receptor-3 in the neurotensin-induced migration of human microglia. J Neurosci. 2003;23(4):1198-205. [DOI:10.1523/JNEUROSCI.23-04-01198.2003] [PMID] [PMCID]
  46. Lévêque R, Corbet C, Aubert L, Guilbert M, Lagadec C, Adriaenssens E, et al. ProNGF increases breast tumor aggressiveness through functional association of TrkA with EphA2. Cancer Lett. 2019;449:196-206. [DOI:10.1016/j.canlet.2019.02.019] [PMID]
  47. Serrero G. Autocrine growth factor revisited: PC-cell-derived growth factor (progranulin), a critical player in breast cancer tumorigenesis. Biochem Biophys Res Commun. 2003;308(3):409-13. [DOI:10.1016/S0006-291X(03)01452-9]