Document Type : Original Research


1 Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour Medical School, Kerman University of Medical Sciences, Kerman, Iran

2 Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman, Iran


Background & Objective: Colorectal cancer (CRC), like other cancers, needs faster and more accurate identifications. A well-timed prognosis of CRC could be an important turning point in the survival of patients. Supplementary signs, such as long non-coding RNAs (lncRNAs), could be helpful for this purpose. A new possible biomarker for CRC identification is introduced by this study.
Methods:  RNA extraction was performed by the RNX-Plus solution for 64 tumor and non-tumor tissues. Complementary DNAs (cDNAs) were synthesized, and quantitative real-time PCR was performed for relative expression level measurement and the data was analyzed statistically using the Prism 6 software. For Small nucleolar host gene 6 knockdown, siRNA was designed based on Reynolds rules. The cells were cultured in their appropriate media, and the siRNA-lipofectamine complex was formed. The transfection complex was presented for sw48, sw480, and sw1116 as CRC cells with different grades. After transfection, the SNHG6/β actin ratio was determined. Then, the distribution of siRNA-treated cells was determined by the Partec flow cytometer instrument and analyzed by the FloMax software.
Results: SNHG6 was more expressed in CRC tumors than non-tumor tissues. In tumor tissues, SNHG6 upregulation and tumors’ grade progression were concurrent. SNHG6 was upregulated in cases with lymphovascular invasion than in cases with perineural invasion. The knockdown of SNHG6 conduced to G1 arrest in CRC cells, more noticeably in high-grade ones.
Conclusion: SNHG6 could be applied as a consideration to differentiate tumor and non-tumor tissues and grade definition in colorectal malignancies, and it could participate in colorectal tumor formation as a cell cycle progressive factor.


Main Subjects

  1. Seyfried TN, Flores RE, Poff AM, D'Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014;35(3):515-27. [DOI:10.1093/carcin/bgt480] [PMID] [PMCID]
  2. Wishart DS. Is cancer a genetic disease or a metabolic disease? EBioMedicine. 2015;2(6):478-9. [PMID] [PMCID] [DOI:10.1016/j.ebiom.2015.05.022]
  3. Siegel R. KD Miller & A. Jemal. 2018. Cancer statistics. CA Cancer J Clin. 2018;68:7-30. [DOI:10.3322/caac.21442] [PMID]
  4. Kalmár A, Nagy ZB, Galamb O, Csabai I, Bodor A, Wichmann B, et al. Genome-wide expression profiling in colorectal cancer focusing on lncRNAs in the adenoma-carcinoma transition. BMC Cancer. 2019;19(1):1059. [PMID] [PMCID] [DOI:10.1186/s12885-019-6180-5]
  5. Huang T, Alvarez A, Hu B, Cheng S-Y. Non-coding RNAs in cancer and cancer stem cells. Chinese journal of cancer. 2013;32(11):582-93. [DOI:10.5732/cjc.013.10170] [PMID] [PMCID]
  6. Zhang H, Chen Z, Wang X, Huang Z, He Z, Chen Y. Long non-coding RNA: a new player in cancer. Journal of hematology & oncology. 2013;6:37-. [DOI:10.1186/1756-8722-6-37] [PMID] [PMCID]
  7. Jafari Oliayi A, Asadi MH. SNHG6 203 and SNHG6 201 Transcripts Can be Used as Contributory Factors for a Well-Timed Prognosis and Diagnosis of Colorectal Cancer. Journal of Kerman University of Medical Sciences. 2018;25(6):483-92.
  8. Siddiqui H, Al-Ghafari A, Choudhry H, Al Doghaither H. Roles of long non-coding RNAs in colorectal cancer tumorigenesis: A Review. Molecular and clinical oncology. 2019;11(2): 167-72. [PMID] [PMCID] [DOI:10.3892/mco.2019.1872]
  9. Zimta A-A, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes. Frontiers in oncology. 2020;10:389. [PMID] [PMCID] [DOI:10.3389/fonc.2020.00389]
  10. Kufel J, Grzechnik P. Small nucleolar RNAs tell a different tale. Trends in Genetics. 2019;35 (2):104-17. [DOI:10.1016/j.tig.2018.11.005] [PMID]
  11. Falaleeva M, Stamm S. Processing of snoRNAs as a new source of regulatory non‐coding RNAs: snoRNA fragments form a new class of functional RNAs. Bioessays. 2013;35(1):46-54. [DOI:10.1002/bies.201200117] [PMID] [PMCID]
  12. Halic M, Moazed D. Transposon silencing by piRNAs. Cell. 2009;138(6):1058-60. [PMID] [DOI:10.1016/j.cell.2009.08.030] [PMCID]
  13. Zhao P, Deng Y, Wu Y, Guo Q, Zhou L, Yang X, et al. Long non-coding RNA SNHG6 promotes carcinogenesis by enhancing YBX1-mediated translation of HIF1α in clear cell renal cell carcinoma. The FASEB Journal. 2021;35(2) :e21160. [DOI:10.1096/fj.202000732RR] [PMCID]
  14. Sun Y, Wei G, Luo H, Wu W, Skogerbø G, Luo J, et al. The long non-coding RNA SNHG1 promotes tumor growth through regulating transcription of both local and distal genes. Oncogene. 2017;36(49):6774-83. [DOI:10.1038/onc.2017.286] [PMID]
  15. Yang Y, Toy W, Choong LY, Hou P, Ashktorab H, Smoot DT, et al. Discovery of SLC3A2 cell membrane protein as a potential gastric cancer biomarker: implications in molecular imaging. Journal of proteome research. 2012;11(12):5736-47. [DOI:10.1021/pr300555y] [PMID] [PMCID]
  16. Zhu B, Cheng D, Hou L, Zhou S, Ying T, Yang Q. SLC3A2 is upregulated in human osteosarcoma and promotes tumor growth through the PI3K/Akt signaling pathway. Oncology reports. 2017;37(5):2575-82. [DOI:10.3892/or.2017.5530] [PMID] [PMCID]
  17. Jafari-Oliayi A, Asadi MH. SNHG6 is upregulated in primary breast cancers and promotes cell cycle progression in breast cancer-derived cell lines. Cellular Oncology. 2019;42(2):211-21. [DOI:10.1007/s13402-019-00422-6] [PMID]
  18. Lan Z, Yao X, Sun K, Li A, Liu S, Wang X. The interaction between lncRNA SNHG6 and hnRNPA1 contributes to the growth of colorectal cancer by enhancing aerobic glycolysis through the regulation of alternative splicing of PKM. Frontiers in oncology. 2020;10:363. [PMID] [PMCID] [DOI:10.3389/fonc.2020.00363]
  19. Cai G, Zhu Q, Yuan L, Lan Q. LncRNA SNHG6 acts as a prognostic factor to regulate cell proliferation in glioma through targeting p21. Biomedicine & Pharmacotherapy. 2018;102:452-7. [DOI:10.1016/j.biopha.2018.03.083] [PMID]
  20. Yan K, Tian J, Shi W, Xia H, Zhu Y. LncRNA SNHG6 is associated with poor prognosis of gastric cancer and promotes cell proliferation and EMT through epigenetically silencing p27 and sponging miR-101-3p. Cellular Physiology and Biochemistry. 2017;42(3):999-1012. [DOI:10.1159/000478682] [PMID]
  21. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nature biotechnology. 2004;22(3):326-30. [DOI:10.1038/nbt936] [PMID]
  22. Leibovitz A, Stinson JC, McCombs WB, McCoy CE, Mazur KC, Mabry ND. Classification of human colorectal adenocarcinoma cell lines. Cancer research. 1976;36(12):4562-9.
  23. Alipoor FJ, Asadi MH, Torkzadeh‐Mahani M. MIAT lncRNA is overexpressed in breast cancer and its inhibition triggers senescence and G1 arrest in MCF7 cell line. Journal of cellular biochemistry. 2018;119(8):6470-81. [DOI:10.1002/jcb.26678] [PMID]
  24. Keshavarz M, Asadi MH. Long non‐coding RNA ES 1 controls the proliferation of breast cancer cells by regulating the Oct4/Sox2/miR‐302 axis. The FEBS journal. 2019;286(13):2611-23. [DOI:10.1111/febs.14825] [PMID]
  25. Yao X, Lan Z, Lai Q, Li A, Liu S, Wang X. LncRNA SNHG6 plays an oncogenic role in colorectal cancer and can be used as a prognostic biomarker for solid tumors. J Cell Physiol. 2020;235(10):7620-34. [DOI:10.1002/jcp.29672] [PMID]
  26. Li Z, Qiu R, Qiu X, Tian T. SNHG6 Promotes Tumor Growth via Repression of P21 in Colorectal Cancer. Cell Physiol Biochem. 2018;49(2):463-78. [DOI:10.1159/000492986] [PMID]
  27. Li M, Bian Z, Yao S, Zhang J, Jin G, Wang X, et al. Upregulated expression of SNHG6 predicts poor prognosis in colorectal cancer. Pathol Res Pract. 2018;214(5):784-9. [DOI:10.1016/j.prp.2017.12.014] [PMID]
  28. Meng Q, Yang B-Y, Liu B, Yang J-X, Sun Y. Long non-coding RNA SNHG6 promotes glioma tumorigenesis by sponging miR-101-3p. The International journal of biological markers. 2018;33(2):148-55. [DOI:10.1177/1724600817747524] [PMID]
  29. Wu Y, Shao A, Wang L, Hu K, Yu C, Pan C, et al. The Role of lncRNAs in the Distant Metastasis of Breast Cancer. Frontiers in Oncology. 2019;9(407). [DOI:10.3389/fonc.2019.00407] [PMID] [PMCID]
  30. Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T. Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci. 2013;70(24):4785-94. [DOI:10.1007/s00018-013-1423-0] [PMID] [PMCID]
  31. Visconti R, Della Monica R, Grieco D. Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword. J Exp Clin Cancer Res. 2016;35(1):153. [DOI:10.1186/s13046-016-0433-9] [PMID] [PMCID]
  32. Sherr CJ, Bartek J. Cell Cycle-Targeted Cancer Therapies. Annual Review of Cancer Biology. 2017;1(1):41-57. [DOI:10.1146/annurev-cancerbio-040716-075628]
  33. Shapiro GI, Harper JW. Anticancer drug targets: cell cycle and checkpoint control. J Clin Invest. 1999;104(12):1645-53. [DOI:10.1172/JCI9054] [PMID] [PMCID]
  34. Nötzold L, Frank L, Gandhi M, Polycarpou-Schwarz M, Groß M, Gunkel M, et al. The long non-coding RNA LINC00152 is essential for cell cycle progression through mitosis in HeLa cells. Scientific Reports. 2017;7(1):2265. [PMID] [PMCID] [DOI:10.1038/s41598-017-02357-0]
  35. Liu F, Xiao Y, Ma L, Wang J. Regulating of cell cycle progression by the lncRNA CDKN2B-AS1/miR-324-5p/ROCK1 axis in laryngeal squamous cell cancer. The International Journal of Biological Markers. 2020;35(1):47-56. [DOI:10.1177/1724600819898489] [PMID]
  36. Liu Z, Chen Z, Fan R, Jiang B, Chen X, Chen Q, et al. Over-expressed long non-coding RNA HOXA11-AS promotes cell cycle progression and metastasis in gastric cancer. Molecular Cancer. 2017;16(1):82. [DOI:10.1186/s12943-017-0651-6] [PMID] [PMCID]
  37. Cen C, Li J, Liu J, Yang M, Zhang T, Zuo Y, et al. Long non-coding RNA LINC01510 promotes the growth of colorectal cancer cells by modulating MET expression. Cancer Cell International. 2018;18(1):45. [PMID] [PMCID] [DOI:10.1186/s12935-018-0503-5]
  38. Xu M, Chen X, Lin K, Zeng K, Liu X, Xu X, et al. lncRNA SNHG6 regulates EZH2 expression by sponging miR-26a/b and miR-214 in colorectal cancer. J Hematol Oncol. 2019;12(1): 3. [DOI:10.1186/s13045-018-0690-5] [PMID] [PMCID]
  39. Yu C, Sun J, Leng X, Yang J. Long non-coding RNA SNHG6 functions as a competing endogenous RNA by sponging miR-181a-5p to regulate E2F5 expression in colorectal cancer. Cancer Manag Res. 2019;11:611-24. [PMID] [PMCID]. [DOI:10.2147/CMAR.S182719]