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ABSTRACT
Background and Objective: Improved and modified automation will require the development of 

smart process control systems that provide on-line decisions to release patients’ test results based 
on high analytical quality assurance formula.

Materials and Methods: We collected patients’ test results from 10840 healthy subjects based 
on 1.96z as truncation limit for 29 common haematochemical analytes at a regional reference 
laboratory. Computer simulation studies by EZ rulesTM and EZ runsTM software were performed 
to generate operating specification charts (OPSpces) that consider truncation limits set at 3(Spop) 
and control limits set at 3 Spop/n1/2 and number of patient subgroups which varied from 10 to 480 
depending on the ratio that varied from 1.58 to 19.75.

Results: On the basis of the test parameters defined and the workload expected in our  regional 
laboratory, average of patients (AOP) algorithms would be expected to be useful for monitoring 
run length on analytical systems that test for ALP, ALT, AST, total bilirubin, calcium, creatinine, 
glucose, hematocrit, hemoglobin, potassium, sodium, TSH and urea. These tests provide high pote-
ntial capability indicating lowPfr, highPed and high analytical quality assurance (AQA) with low 
control observations for applying AOP algorithms to monitor run length.

Conclusion: Our investigation revealed that approximately fifty percent of commonly requested 
haematochemical tests could achieve high capability in order to establish AOP method to maximize 
analytical run length.

Key words: Average of patients, Regional reference laboratory, Analytical run length

Received: 16 March 2008
Accepted: 9 April 2008
Address communicatins to: Dr. Peyman Mohammadi Torbati, Department of Pathology, Labbafinejad Hospital, Shahid Beheshti University of 
Medical Sciences, Tehran, Iran. 
Email: p2000torbati@yahoo.com

Iranian Journal of Pathology (2008)3 (3), 113- 118

Introduction

The remodeling of laboratory processes should 
consider the need for optimizing and improving 

quality control procedures and practices. Advanced 
automation will require the development of smart 
process control systems that provide on-line decisions 

to release patient test results, repeat analyses of patient 
specimens, and maximize the cost-effective operation 
of the testing process. Providing these capabilities 
will require strictly designed control procedures that 
optimize the frequency of false rejections, probability 
of error detections, and maximize the analytical run 
length.
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The development of quality control (QC) planning 
tools such as power function graphs, critical error 
graphs, and operating specification charts (OPSpecs) 
facilitate the selection of control rules and number 
of control measurements which are selected given to 
measured imprecision and inaccuracy of an analytical 
system (1;2). In this regard, QC planning is based on 
analytical and quality requirements that are needed 
for a particular analyte or test (3;4).

Recent studies have demonstrated the application 
of QC planning models for a variety of multi-test 
chemical analyzers and immunoassay methods 
providing a systematic QC planning process to 
optimize the detection of clinically significant errors 
(5;6).

Nevertheless, there has been little progress in 
developing a reliable and reproducible method 
for maximizing the analytical run length. In most 
laboratories, run lengths are established on the basis of 
regulatory requirements, manufacturers’ recommen-
dations, or laboratory experience with analytical 
system (7). Regulatory requirements may set a maxi-
mum run length of 24 hours and manufacturers may 
recommend an eight hours work shift. In practice, 
laboratories may define shorter periods such as 2 or 
4 hours according to the stability of the method and 
measurement system.

Since the productivity of analytical system and the 
cost per test depend on the approximate numbers of 
standards, controls, and repeat patient samples, it 
would be desirable to develop an automatic process 
for selecting statistical QC procedures to determining 
the appropriate maximum run length (8). In 1994, 
Cembrowski (9) introduced the average of patients 
(AOP) QC method, in which the average of patients 
test results which are detected within the reference 
interval used to monitor variations in testing process. 
Hoffman et al assessed the expected performance 
and the practical usefulness of such procedure (10). 
They used powerful computer simulation programs 
to develop power curves that describe the probability 
of false rejection as a function of the size of the 
systematic error (11). They showed that the power of 
AOP QC method depends on the ratio of population 
to analytical standard deviation, the width of the 
truncation limits and control limits and finally the 
number of patient test results. In this paper, given to 

patient test results which are gathered from a regional 
reference laboratory, we describe how AOP procedures 
can be designed to provide the error detection needed 
to monitor the length of analytical run.

Materials and Methods

We collected patient test results of 10840 healthy 
subjects based on 1.96z as truncation limit for results 
of 29 common haematochemical analytes at a regional 
reference laboratory (Labbafinejad hospital) and all 
of the patients with test results which were located 
out of this control limit were excluded. Computer 
simulation studies by EZ rulesTM and EZ runsTM 
software were performed to generate patient test 
values and patient population control statistics. Power 
curves were determined for ratios of the population 
standard deviation (Spop) to the analytical standard 
deviation (Smeas) of 1.58 to 19.75, truncation limits set 
at 3(Spop), and control limits set at 3Spop/n1/2, where n is 
the number of patient test results, which varied from 
10 to 480 depending on Spop/Smeas ratio. The program 
allows user specification of the population mean, 
biological standard deviation Sbiol, Smeas, n, truncation 
limits, control limits, systematic error, and number of 
runs at each level of systematic error. 

The program simulates biological and analytical 
variation independently which are scaled appropriately 
and combined with the population mean and systematic 
error to yield a simulated patient test results. Patient 
test results that exceeded the truncation limits were 
omitted from calculations of the AOP statistics and 
from the sample count. For each Spop/Smeas and n, 
we executed 20 simulated runs at various levels of 
systematic error and plotted power curves showing 
the probability for rejection vs. the size of systematic 
errors. For calculation of operating specifications, the 
sizes of systematic errors for which probabilities of 
rejection of 0.9, 0.5, and 0.25 would be achieved by 
the AOP procedures were estimated by interpolation 
of the points related to specified probabilities.

OPSpecs charts and graphs showing the critical-
size systematic error superimposed on power curves 
were prepared with the QC ValidatorTM program 
(version 2.0). QC procedures assessed on the basis 
of the ratio determined for the test of interest. The 
critical size systematic error was calculated as 
follows: ∆SEcrit = [(TEa -biasmeas)Smeas]-1.65, where 
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TEa is the analytical allowable total error,  is 
the observed inaccuracy or stable systematic error 
of the measurement procedure, and 1.65 is a Z-
value. When the mean of the patient test results 
causes 5% of individual patient test results to have 
errors exceeding the total error requirement, the run 
will be considered unstable. For example, given an 
analytical quality requirement of 10%, observed 
imprecision of 2%, observed inaccuracy of 0.0%, 
and Spop/Smeas ratio of 4, an AOP algorithm requires 40 
patient test results to effectively monitor stability of 
the analytical run. Figure 1 shows an OPSpecs chart 
for AOP algorithms having n from 200 to 40, which 
are represented by the lines from top to bottom. The 
observed imprecision and inaccuracy are showing 
the operating point. An effective AOP algorithm is 
one whose limits of inaccuracy and imprecision are 
above the operating point. The solid line identifies 
an AOP algorithm with n=40 as being appropriate 
for this application. Figure    2 shows the critical-size 
error imposed on the power curves to further illustrate 
the error detection available with different n values. 
Given a test that has a different Spop/Smeas ratio of 8 
but the same analytical quality requirement and the 
same observed imprecision and observed inaccuracy, 
the AOP algorithm requires 120 patient test results 
to effectively monitor the stability of the analytical 
run. Figure 3 shows an OPSpecs chart for n from 
450 to 120, as represented by the lines from top to 
bottom. The observed imprecision and inaccuracy 
are again shown by the operating point and the solid 
line identifies the AOP algorithm with n=120 as being 
appropriate for this application. Figure 4 provides 
comparable information in the form of the critical-
error graph for systematic error.  

Figure 1: OPSpecs chart for AOP algorithm 
for a test possessing a ratio of 4

Figure 2: Critical-error graph for AOP algo-
rithms for a testing possessing a ratio of 4

Figure 3: OPSpecs chart for AOP algorithm 
for a test possessing a ratio of 8

Figure 4: Critical-error graph for AOP algo-
rithm for a test possessing a ratio of 8

Results

Table 1 summarizes important test characteristics 
and quality-planning parameters for the assessment 
and design of AOP algorithm for a variety of common 
laboratory tests. The number of tests expected per 
day varies from 25 to 960, depending on the analyte. 
These test volumes represent usual daily workloads in 
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a regional reference laboratory (pathology laboratory 
of Labbafinejad hospital, Tehran, Iran). Estimates 
of the population and method standard deviations 
represent observations on current analytical systems, 
resulting in Spop/Smea ratios from as low as 1.58 for 
sodium to as high as 19.75 for FSH and 32.5 for 
triglyceride. The analytical total error requirements 
(TEa) represent CLIA PT criteria for acceptability, 
these criteria are often more demanding for many 
chemistry tests [e.g. 5% vs. 10% for calcium, 15% 
vs. 30% for ALP, 15%  vs. 20% for ALT and AST, 
10% vs. 15% for creatinine, 7% vs. 10% for glucose] 
and less demanding for a couple of hematologic tests 
[10% vs. 6% for hematocrit]; thus these assessments 
and recommendations for AOP applications depend 
on the quality requirements that must be achieved by 
the particular laboratory. 

On the basis of the test parameters defined and 
the workload expected in our regional laboratory, 
AOP algorithms would be expected to be useful for 
monitoring run length on analytical systems that test 
for ALP, ALT, AST, total bilirubin, calcium, creatinine, 
glucose, hematocrit, hemoglobin, potassium, sodium, 
TSH and urea (Table 1). AOP algorithms would have 
only moderate potential for monitoring run length 
for tests such as ferritin, LDH, phosphate, T3, T3 
uptake, and urate (Table 1). For most of these tests, 
an increased daily workload would make AOP 
procedures more useful for monitoring run length for 
tests such as amylase, total and HDL cholesterol, CK, 
FSH, LH, T4, total protein, and triglyceride (Table 1). 
The overall findings point out the need to assess the 
performance of AOP algorithms for each laboratory 
on the basis of the quality requirements.

Remodeling of Average of Patients QC Method to Maximize Lengths of ...

Table 1: Test characteristics and performance criteria to design AOP algorithm

PedSEcritTEaSpop/Smeassubgroupn, expected per day Analyte

applicationfor AOP  potentialHigh
0.993.771513.83450450ALP
0.984.53155.3740255ALT
1.004.35152.240255AST
0.9610.85208.6120300Total bilirubin 

0.911.2151.8460270Calcium
0.993.91104.4440850Creatinine
0.993.7376.0090960Glucose
1.008.35105.0080480Hematocrit
0.968.35109.09120480hemoglobin
0.981.6852.78100600Potassium
0.93.8531.5860600Sodium
0.992.97308.89300450TSH
0.912.611011.09450850Urea

applicationfor AOPpotentialModerate
0.942.35247.89120260Ferritin
0.803.6886.5960450LDH
0.916.182011.59180500Platelet
0.933.91107.6590270Phosphate
0.943.15242.1810350Total T3
0.763.15123.0020320T3 uptake
0.975.021013.59300280Uric acid

applicationfor AOPpotentialLow 
0..635.85158.546025Amylase
0.120.26510.34450950Cholesterol
0.160.0257.00300760HDL
0.312.85154.932064CK
0.271.782419.75180120FSH
0.272.712415.27180120LH
0.090.9854.948080Total protein
0.183.15246.1060170Total T4
0.190.98532.50480920Triglyceride
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Discussion 

AOP algorithms can be designed to monitor the 
stability of tests and systems, with the objective of 
providing statistical evidence of instability to signal 
the end of a stable period of operation, or the end 
of an analytical run. The amount of instability that 
can be allowed before ending an analytical run is the 
critical systematic error calculated from the TEa and 
the observed imprecision   and inaccuracy   of the 
measurement procedure (12).This instability can be 
detected by AOP algorithms that depend on the ratio 
of the population and analytical standard deviations  
for the particular test and include an appropriate 
number of patient samples.

Cembrowski et al. (9) guidelines for implementing 
AOP procedures utilized a nomogram for selecting 
an appropriate number of patient samples on the 
basis of the   ratio and the probability for detecting 
a shift equivalent to 2 times  .Table 1 shows that the 
critical systematic error varies greatly ,from as low 
of 0.02 for HDL cholesterol to a high of 10.85  for 
total bilirubin; thus a more quantitative approach is 
needed to design the AOP algorithm for the exact 
conditions that must be monitored for individual tests 
in a  particular laboratory.

To provide a quantitative design approach, power 
curves were determined for different ratios and a 
wide range of n values, then incorporated in the 
table of candidate QC procedures in a QC Validator 
2.0. This program (11) enabled the preparation of 
OPSpecs charts, as well as critical error graphs, to 
facilitate the selection and design of appropriate AOP 
algorithms. This approach makes it practical to assess 
the expected performance of AOP algorithms quickly 
and easily for many individual tests on different 
analytical systems (13;14).

Results show that it may be difficult to obtain a 
sufficient numbers of patient samples to monitor the 
run lengths of some tests, even in a regional reference 
laboratory. For practical implementation, it may be 
necessary to determine whether the AOP algorithm for 
a single test can be used as a measure of stability for a 
group of tests or for a whole analytical system. Such 
applications should still be an improvement over the 
current practices for defining run length based on past 
experience with the instrument systems, rather than 
current performance data about system instability. 
Other instrument information may also be combined 
with AOP information to refine the assessment of 
instability and run length (15).

Implementation requires computer support to 
process the numbers of patient test results that 
are needed to provide the desired sensitivity for 
monitoring analytical runs. Conventional laboratory 
information systems and QC software may not 
provide the capability to accumulate large numbers 
of patient results for QC purposes, trim or select only 
those within specified truncation limits, calculate 
appropriate statistics to estimate the mean values, and 
then assist operators in interpretation the results and 
making decision on process performance (16).

Therefore strategies for implementation may need 
to consider alternative ways to calculate and display 
the data. The means of subgroups may be plotted 
on conventional means chart to display changes 
and trends and multi-rule decision criteria could be 
applied to evaluate the data. Cusum charts could also 
be used, with the means of subgroups as the data 
points. Exponentially weighted moving averages 
and control charts can be used to evaluate changes in 
process (17).

As laboratories reengineer their testing process and 
move towards higher levels of automation, improved 
process control software will be needed to assure both 
the quality of laboratory test results and productivity 
of laboratory testing processes. A recent College of 
American Pathologists Q-probe on laboratory QC 
practices (18) revealed that most laboratories that are 
accredited by IFCC are using the same QC practices as 
10 years ago. These QC practices, which are already 
outdated by the introduction of newer generations of 
analytical systems, need to be improved to balance the 
error detection and false rejection characteristics of 
statistical QC procedures, as well as to maximize run 
length and the number of control measurements (11). 
Improved process control software will be necessary 
to support this optimization and also to implement 
improved QC designs for individual tests performed 
by multi-test systems.

Conclusion

In the future , process control software may evolve 
into the next generation laboratory information system 
because it will provide active control of analytical 
systems for the purpose of  acquiring high quality 
patient test results at low cost. High quality will mean 
accurate test results with as short turnaround time as 
possible; low cost will mean effective utilization of 
available testing processes and associated laboratory 
resources. To achieve high quality and low cost, 
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laboratories will have to develop more quantitative 
approaches for managing the quality and productivity 
of their testing processes. Improved management 
should include careful selection of statistical process 
control rules and numbers of control measurements 
for stable control materials and careful application of 
AOP algorithms to utilize patient data for maximizing 
the length of the analytical run.
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