Bilateral Multiple Lymphoepithelial Cysts of Palatine Tonsils

Zhaleh Mohsenifar¹, Nazanin Mahdavi², Sara Bagheri²

¹. Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
². Department of Oral and Maxillofacial Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran

ABSTRACTS

Lymphoepithelial cyst of oral cavity is a rare cystic lesion that presents as an asymptomatic submucosal mass and is usually discovered during routine dental examinations. The site most commonly affected is floor of the mouth but tonsillar involvement seems to be very rare. Multiple lymphoepithelial cysts have been reported in parotid of HIV positive patients however in oral cavity they usually present as solitary lesions. We report a case of multiple bilateral lymphoepithelial cysts of the palatine tonsils in a 72 years old male that presents with fever, pain and obstructive sleep apnea. We did not find any bilateral or multiple tonsillar lymphoepithelial cysts in the literature and the present paper seems to be the first report. We suggest although lymphoepithelial cysts rarely occur in the tonsils but they should be considered in differential diagnosis of adenotonsillar enlargement and related obstructive sleep apnea.

Keywords: Palatine Tonsil, lymphoepithelial Cyst

Introductions

Oral lymphoepithelial cyst (LEC) is a rare lesion that develops within oral and pharyngeal lymphoid tissues and is microscopically identical to branchial cleft cyst but smaller in size (1). Histologically, it presents as a cystic lesion lined by stratified squamous epithelium with desquamated epithelial cells seen filling the cyst lumen. Surrounding the cyst lining there are variable amounts of lymphoid tissue with occasional germinal center formation (2). Etiologically they are thought to arise from entrapment of epithelium within lymph node or lymphoid tissue and subsequent epithelial proliferation results in clinically evident mass. It is also possible that they may develop from surface mucosal epithelium that becomes enclaved in lymphoid tissue during embryogenesis (1). Multiple LECs have been reported in parotid of HIV positive patients (3-7); however in the oral cavity they present as a solitary asymptomatic submucosal mass. The most commonly affected sites are floor of the mouth followed by ventral
and posteriolateral portions of the tongue but
tonsillar involvement is very rare. We could only
find one case of solitary LEC of the tonsil in
literature (8). To the best of our knowledge this
is the first report of bilateral multiple tonsillar
LECs presented with pain, fever and obstructive
sleep apnea (OSA).

Case report

A 72 year old Iranian male was admitted to
Ayatollah Taleghani University Hospital in
Tehran, Iran with pain, snoring, sleep apnea and
fever since 12 months. On systematic physical
examination no abnormality was detected
except for the bilateral tonsillar hyperplasia
and his medical history was unremarkable. In
examination right tonsil was +1 in tonsillar
hypertrophy grading scale with a yellowish
surface containing a cystic lesion, and left tonsil
was +2. Tonsillectomy was performed under
general anesthesia.

On gross examination in the right tonsil a cystic
space with 1.2 cm in diameter containing a creamy
material was observed. After tissue fixation in
formaldehyde (formalin) solution, the specimen
was dehydrated by using a series of ethanol
solutions of increasing concentration until pure,
water-free alcohol was reached. Then clearing
process was established by using xylene. At this
point the tissue was infiltrated by histological
wax and embedded in paraffin blocks. Finally the
specimens were cut in 5μ sections and prepared
by hematoxylin and eosin (H&E) staining.

Microscopically in the left tonsil two large
cystic spaces (Fig. 1A) and in the right tonsil
multiple smaller cysts were seen (Fig. 1B). The
cysts were lined by parakeratinized stratified
squamous epithelium without rete ridges (Fig.
1C). The cysts lumen was filled by desquamated
epithelial cells. A dense lymphocytic infiltration
was observed surrounding the cyst epithelium
with formation of germinal center in some areas.
The diagnosis of lymphoepithelial cyst was
established histologically.

Fig .1- Histological aspect in hematoxylin-
eosin stain. (A) Left tonsil with 2 large cystic
spaces. The cyst wall contains lymphoid tissue
with occasional germinal center formation
(highlighted area) (×100); (B) Right tonsil with
multiple cystic spaces (×100); (C) cyst lining is
parakeratinized stratified squamous epithelium
and is supported by a dense lymphocytic
infiltration (×400).
Discussion

Bhaskar and Bernier first recommended the term LEC in 1959 (9, 10). Gold and Lewittown described the first oral LEC in 1962 (11, 12). A lymphoepithelial cyst may occur in virtually any organ. After the neck and oral cavity the most frequent sites reported in the literature are pancreas and thyroid gland (12).

Oral lesions are thought to arise from entrapment of epithelium within lymph node or lymphoid tissues and subsequent epithelial proliferation results in clinically evident mass (13). It is also possible that they may develop from surface mucosal epithelium that becomes enclaved in lymphoid tissue during embryogenesis (1,14, 15).

Knapp believes the lymphoepithelial cysts found in the oral tonsils were not true cysts but pseudocysts. He proposed that pseudocysts develop when the tonsillar crypt opening becomes plugged, which results in enlargement of the tonsillar tissue secondary to an accumulation of purulent materials or desquamated cells and keratins (16). Pancreatic lesions are believed to be epithelial inclusions embedded within the pancreas during embryogenesis (17) and cervical LEC develop from remnants of the branchial clefts (5, 18) as they are known as Branchial Cleft Cysts. Viral infections like EBV have been suggested to play a role in pathogenesis of parotid LECs in HIV positive patients (19).

Histologically LEC demonstrates a cystic cavity that is lined by parakeratinized stratified squamous epithelium without rete ridges. In rare instances in the oral LEC the epithelial lining also may contain mucous cells and some cervical LECs demonstrate respiratory epithelium. The most striking feature is the presence of lymphoid tissue in the cyst wall with occasional germinal center formation (20).

Clinically they present as a small submucosal mass, usually less than 1 cm in diameter ranging from 3 to 15 mm (12, 21). They are asymptomatic and often detected during dental practice (22). The site most commonly affected is floor of the mouth where approximately 50% to 60% of the cases are found. The ventral and posteriolateral portion of the tongue constitute an additional 40% of cases (10, 13, 21).

In the present case the largest cystic space was 1.2 cm in diameter on gross examination and the patient reveals symptoms including pain fever and obstructive sleep apnea (OSA) that might be related to the location of the lesion that caused tonsillar enlargement. Except for one case of unilateral involvement of left palatine tonsil reported by Choi (8) we could not find any bilateral or multiple LECs of palatine tonsils in the English literature and the present case seems to be the first report.

The ages of the patients ranged from 4 to 81 years with a mean age of 32-34 (23, 24). In the oral cavity they present as solitary lesions but Friedrich reported an unusual case of bilateral intraosseous LEC of the mandible (25). Multiple benign lymphoepithelial cysts of parotid occur in patients with HIV infection generally as one of the signs of this infection (3-7).

Choi et al. reported bilateral LECs in thyroid gland (26). Scarce reports mention the coexistence of oral LECs with entities such as the epidermoid cyst (27), geographic tongue (28) and epithelial inclusion cyst (1). Costa reported simultaneous occurrence of a lymphoepithelial cyst and squamous cell carcinoma in the oral cavity (29). Table 1 shows cases of oral LECs reported in the literature since the first report by Gold in 1962 (11).
Table 1: Oral lymphoepithelial cyst cases reported in the literature

<table>
<thead>
<tr>
<th>Number of the cases</th>
<th>Location</th>
<th>Gender</th>
<th>Age (yr)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Floor of the mouth</td>
<td>M</td>
<td>42</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Palatine Tonsil</td>
<td>F</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>Tongue</td>
<td>M</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>Floor of the mouth</td>
<td>M</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>Tongue</td>
<td>F</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Floor of the mouth (n=1), Tongue (n=1)</td>
<td>F=2</td>
<td>56 (55-57)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Floor of the mouth (n=15), tongue (n=8), palate (n=1)</td>
<td>M=17</td>
<td>40 (15-65)</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>Floor of the mouth</td>
<td>M</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>24</td>
<td>Floor of the mouth</td>
<td>M=9</td>
<td>43 (12-74)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Tongue</td>
<td>F</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>21</td>
<td>Floor of the mouth (n=17), palate (n=2), Buccal mucosa (n=1), Retromolar area (n=1)</td>
<td>M=9</td>
<td>36 (7-65)</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>F=12</td>
<td>M=12</td>
<td>32 (17-48)</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>Floor of the mouth (n=7), tongue (n=2), palate (n=4)</td>
<td>M=9</td>
<td>33 (20-46)</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>Floor of the mouth</td>
<td>M=9</td>
<td>33 (20-46)</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Bilateral Intramandibular (n=1)</td>
<td>F</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>Tongue</td>
<td>F</td>
<td>46</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>Floor of the mouth</td>
<td>M</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>38</td>
<td>Floor of the mouth (n=19), Tongue (n=14), palate (n=4), Retromolar area (n=1)</td>
<td>M=23</td>
<td>43 (14-81)</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>F=15</td>
<td>M=15</td>
<td>43 (14-81)</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>Floor of the mouth (n=2), Tongue (n=3), palate (n=1)</td>
<td>M=3</td>
<td>43 (25-60)</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>F=3</td>
<td>F=3</td>
<td>43 (25-60)</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>Floor of the mouth</td>
<td>M</td>
<td>34</td>
<td>33</td>
</tr>
<tr>
<td>1</td>
<td>Floor of the mouth</td>
<td>M</td>
<td>5</td>
<td>34</td>
</tr>
<tr>
<td>1</td>
<td>Floor of the mouth</td>
<td>M</td>
<td>29</td>
<td>35</td>
</tr>
<tr>
<td>1</td>
<td>Tongue</td>
<td>M</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>Tongue</td>
<td>M</td>
<td>72</td>
<td>37</td>
</tr>
<tr>
<td>1</td>
<td>Tongue</td>
<td>F</td>
<td>28</td>
<td>38</td>
</tr>
<tr>
<td>1</td>
<td>Floor of the mouth</td>
<td>M</td>
<td>34</td>
<td>39</td>
</tr>
<tr>
<td>9</td>
<td>Floor of the mouth (n=2), Tongue (n=4), Palate (n=1), Oropharynx (n=2)</td>
<td>M=2</td>
<td>38 (16-60)</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>F=8</td>
<td>F=8</td>
<td>38 (16-60)</td>
<td>40</td>
</tr>
</tbody>
</table>

F: Female; M: Male
Adenotonsillar enlargement is the main cause of obstructive sleep apnea (OSA) in the paediatric population. However, this prevalent syndrome is more complicated in adults (41). The morbidity of OSA includes hypertension, arrhythmia, heart disease, erythrocytosis, and hyperlipidemia (42). Obstructive sleep apnea has also been described in cases of benign lymphoid hyperplasia, plasmacytoma, amyloidosis, pharyngeal tumours and diseases that involve the nasopharyngeal structures (43). Obstructive sleep apnea is a common disorder effecting overweight/obese adults. Non-obese adults with obstructive sleep apnea should be carefully assessed for evidence of an anatomic limitation of the upper airway lumen that might result from various craniofacial anomalies, macroglossia and adenoid tonsillar hypertrophy (42). Tonsillar hypertrophy is a common remedial risk factor for Obstructive sleep apnea in the pediatric population, but may also play a role in the pathophysiology of sleep-related upper airway obstruction in adults.

In anterior floor of the mouth salivary lesions like sialolith may be similar in appearance to a lymphoepithelial cyst. However a history of pain and swelling of the associated salivary gland would be expected with a salivary duct stone (12). Developmental anomalies such as teratomas or dermoid cyst, benign mesenchymal neoplasms and salivary gland tumors might also be considered in differential diagnosis for a floor of the mouth soft tissue mass (13). When it involves the parotid gland, a lymphoepithelial cyst must be distinguished from salivary lymphoma, Warthin’s tumor and low grade meucoepidermoid carcinoma. Conservative excisional biopsy is generally used for diagnosis as well as for treatment. Recurrence is not expected (12). We suggest that although lymphoepithelial cysts rarely occur in the tonsils, they should be considered in differential diagnosis of adenotonsillar enlargement and related obstructive sleep apnea.

Acknowledgment

The authors declare that there is no conflict of interests.

References

37. Flaitz CM, Davis SE. Oral and maxillofacial
54

Bilateral Multiple Lymphoepithelial Cysts of Palatine Tonsils

