Document Type: Original Research

Authors

1 Dept. of Biology, Payame Noor University, Iran

2 Department of Biology, Payame Noor University, Iran

Abstract

Background & Objectives: Nanotechnology is one of great important part of technology. Nanoparticles can be used in different applications for industrial, medical, military and personal use. The objectives of this study were preparation of Polystyrene/ZnO nanocomposite films via a simple method and investigation of antibacterial activity of them.
Methods: Polystyrene /ZnO nanoparticle (PS/nano-ZnO) composite films were prepared via simple method with 0, 0.1, 1 and 2.5% wt concentration of ZnO and characterized by scanning electron microscopy (SEM). The antibacterial properties of the product were investigated against Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Bacillus cereus.
Results: The survival ratio of L. monocytogenes, E. coli, S. aureus and B. cereus decreased with increase of ZnO content on PS/nano-ZnO composite films and the best antibacterial activity was obtained with 2.5% wt ZnO-PS composite films for all bacteria. Results show the larger sensitivity of the S. aureus compared to other bacteria.
Conclusion: The treated fabric with ZnO NP indicates significant improve for antibacterial properties for polystyrene fabric.

Keywords

  1. Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 2001; 3(7): 643–6.
  2. Li QL, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 2008; 42(18): 4591–602.
  3. Zhang L, Jiang Y, Ding Y, Povey M, York D. Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 2007; 9(3): 479–89.
  4. Seven O, Dindar B, Aydemir S, Metin D, Ozinel MA, Icli S. Solarphotocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO , ZnO and Sahara desert dust. J Photochem Photobiol A- Chem 2004; 165(1-3): 103–7.
  5. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters 2006; 6(4): 866–70.
  6. Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 2003; 54(2): 177–82.
  7. Sandstead HH. Understanding zinc—recent observations and interpretations. J Lab Clin Med 1994; 124(3): 322–7.
  8. Wilczynski M. Anti-microbial porcelain enamels. Ceram Eng Sci Proc 2000; 21(5): 81–3.
  9. Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E. Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 2003; 133(12): 4077–82.
  10. Jin T, Sun D, Su JY, Zhang H, Sue HJ. Antimicrobial efficacy of Zinc Oxide Quantum Dots against Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7. J Food Sci 2009; 74(1): 46-52.
  11. Eskandari M, Haghighi N, Ahmadi V, Haghighi F, Mohammadi SHR. Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass. Physica B2011; 406(1): 112 –14.
  12.  Martin-Mazuelos E, Peman J. Comparison of the sensititre yeastone colorimetric antifungal panel and etest with the NCCLS M38-A method to determine the activity of amphotericin B and itraconazole against clinical isolates of Aspergillus spp. J Antimicrob Chemoth 2003; 52(3): 365- 70.
  13. Cavalli R, Francesco T, Carlotti M.  Nanoparticles derived from amphiphilic c-cyclodextrins. J Incl Phenom Macro 2007; 57(1-4): 657–61.

14.  Gorensek M, Recelj P. Nanosilver Functionalized Cotton Fabric. Text Res J 2007; 77(3): 138-41.

  1. Shafei A, Abou-Okeil A. ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohydr Polym, 2011; 83(2): 920–5.
  2. Chen CY, Chiang CL. Preparation of cotton fibers with antibacterial silver nanoparticles. Mater Lett 2008; 62(21-22): 3607–9.
  3. Duran N, Marcarto PD, Souza De, Alves GI, Esposito, E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotech 2007; 3(2): 203–8.
  4. Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T. Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 1996; 29(4): 627–33.
  5. Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS- mediated cell injury. Adv Funct Mater 2009; 19(6): 1–11.
  6. Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y. Toxicological effect of ZnO nanoparticles based on bacteria. J Nanopart Res 2008;9: 479–89.
  7. Nair S, Sasidharan A, DivyaRani VV, Menon D, Nair S, Manzoor K. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 2009; 20: 235-41.
  8. Mirhosseini M, Firouabadi F B. Antibacterial activity of zinc oxide nanoparticle suspensions on food-borne pathogens. Int J Dairy Technol 2013; 66: 291-5.
  9. Sawai J, Yoshikawa T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 2004; 96(4): 803–9.
  10. Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Sawaki T, et al. Antibacterial characteristics of magnesium oxide powder. World J Microbiol Biotechnol 2000; 16(2): 187–94.

25.  Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, et al. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection. J Antimicrob Chemother 2004; 54(6): 1019-24.

26.  Yamamoto O, Komatsu M, Sawai J, Nakagawa ZE, Mater J. Effect of lattice constant of zinc oxide on antibacterial characteristics. Sci Mater Med 2004; 15(8): 847-51.

  1.  Ciofi N, Torsi L, Ditaranto N, Sabatini L, Zambonin PG, Tantillo G, et al. Antifungal activity of polymer-based copper nanocomposite coating. Appl Phys Lett 2004; 85(12): 2417-19.

28.  Ciofi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabatini L, et al. Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties. Chem Mater 2005; 17(21): 5255-62.

  1. Xue-Yong M, Wei-De Z. Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polym Degrad Stab 2009; 94(3): 1103–9.
  2. Li S C, Li Y N. Mechanical and antibacterial properties of modified nano-ZnO/high-density polyethylene composite films with a low doped content of nano-ZnO. J Appl Polym Sci 2010; 116(5): 2965-9.
  3. Perelshtein I, Applerot G, Perkas N, Wehrschuetz- Sigl E, Hasmann A, Guebitz G, et al. CuO–cotton nanocomposite: Formation, morphology, and antibacterial activity.Surf Coat Technol 2009; 204(1-2): 54-7.
  4. Li JH, Hong RY, Li MY, Li HZ, Zheng Y, Ding J. Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog Org Coat 2009; 64(4): 504–9.
  5. Seo J, Jeon G, Jang E S, Khan S B, Han H. Preparation and properties of poly(propylene carbonate) and nanosized ZnO composite films for packaging applications. J Appl Polym Sci 2011; 122(2): 1101-8.