Document Type : Review Article


1 Molecular Pathology and Cytogenetics Division, Pathology Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Pathology, Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran

4 Department of Pathology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran

5 Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

6 Cell-based Therapies Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran


Molecular assays for detection of nucleic acids in biologic specimens are valuable diagnostic tools supporting clinical diagnoses and therapeutic decisions. Pre-analytical errors, which occur before or during processing of nucleic acid extraction, contribute a significant role in common errors which take place in molecular laboratories. Certain practices in specimen collection, transportation, and storage can affect the integrity of nucleic acids before analysis. Applying best practices in these steps, helps to minimize those errors and leads to better decisions in patient diagnosis and treatment. Widely acceptable recommendations, which are for optimal molecular assays associated with pre-analytic variables, are limited. In this article, we have reviewed most of the important issues in sample handling from bed to bench before starting molecular tests, which can be used in diagnostic as well as research laboratories. We have addressed the most important pre-analytical points in performing molecular analysis in fixed and unfixed solid tissues, whole blood, serum, plasma, as well as most of the body fluids including urine, fecal and bronchial samples, as well as prenatal diagnosis samples.


Main Subjects

  1. Carraro P, Plebani M. Errors in a stat laboratory: types and frequencies 10 years later. Clin Chem. 2007;53(7):1338-42. [DOI:10.1373/clinchem.2007.088344] [PMID]
  2. Plebani M. Quality indicators to detect pre-analytical errors in laboratory testing. Clin Biochem Rev. 2012;33(3):85-8.
  3. Compton CC, Robb JA, Anderson MW, Berry AB, Birdsong GG, Bloom KJ, et al. Preanalytics and Precision Pathology: Pathology Practices to Ensure Molecular Integrity of Cancer Patient Biospecimens for Precision Medicine. Arch Pathol Lab Med. 2019;143(11):1346-63. [DOI:10.5858/arpa.2019-0009-SA] [PMID]
  4. Cree IA, Deans Z, Ligtenberg MJ, Normanno N, Edsjo A, Rouleau E, et al. Guidance for laboratories performing molecular pathology for cancer patients. J Clin Pathol. 2014;67(11):923-31. [DOI:10.1136/jclinpath-2014-202404] [PMID] [PMCID]
  5. Chalkley R, Hunter C. Histone-histone propinquity by aldehyde fixation of chromatin. Proc Natl Acad Sci U S A. 1975;72(4):1304-8. [DOI:10.1073/pnas.72.4.1304] [PMID] [PMCID]
  6. Li J, Smyth P, Flavin R, Cahill S, Denning K, Aherne S, et al. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotech. 2007;7(1):36. [DOI:10.1186/1472-6750-7-36] [PMID] [PMCID]
  7. Skage M, Schander C. DNA from formalin-fixed tissue: extraction or repair? That is the question. Mar Biol Res. 2007;3(5):289-95. [DOI:10.1080/17451000701473942]
  8. Tojo M, Couso E, Vázquez‐Boquete A, Pérez‐Becerra R, García‐Caballero T, Forteza J, et al. Fluorescent in situ hybridization heating pretreatment: the key is temperature control. Pathol Int. 2010;60(12):792-4. [DOI:10.1111/j.1440-1827.2010.02600.x] [PMID]
  9. Basyuk E, Bertrand E, Journot L. Alkaline fixation drastically improves the signal of in situ hybridization. Nucleic Acids Res. 2000;28(10):E46. [DOI:10.1093/nar/28.10.e46] [PMID] [PMCID]
  10. Mostegl MM, Richter B, Dinhopl N, Weissenbock H. Influence of prolonged formalin fixation of tissue samples on the sensitivity of chromogenic in situ hybridization. J Vet Diagn Invest. 2011;23(6):1212-6. [DOI:10.1177/1040638711425584] [PMID] [PMCID]
  11. Do H, Dobrovic A. Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem. 2015;61(1):64-71. [DOI:10.1373/clinchem.2014.223040] [PMID]
  12. Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 2002;161(6):1961-71. [DOI:10.1016/S0002-9440(10)64472-0]
  13. Douglas MP, Rogers SO. DNA damage caused by common cytological fixatives. Mutat Res. 1998;401(1-2):77-88. [DOI:10.1016/S0027-5107(97)00314-X]
  14. Nam SK, Im J, Kwak Y, Han N, Nam KH, Seo AN, et al. Effects of fixation and storage of human tissue samples on nucleic Acid preservation. Korean J Pathol. 2014;48(1):36-42. [DOI:10.4132/KoreanJPathol.2014.48.1.36] [PMID] [PMCID]
  15. Guyard A, Boyez A, Pujals A, Robe C, Tran Van Nhieu J, Allory Y, et al. DNA degrades during storage in formalin-fixed and paraffin-embedded tissue blocks. Virchows Arch. 2017;471(4):491-500. [DOI:10.1007/s00428-017-2213-0] [PMID]
  16. Zsikla V, Baumann M, Cathomas G. Effect of buffered formalin on amplification of DNA from paraffin wax embedded small biopsies using real-time PCR. J Clin Pathol. 2004;57(6):654-6. [DOI:10.1136/jcp.2003.013961] [PMID] [PMCID]
  17. Williams C, Pontén F, Moberg C, Söderkvist P, Uhlén M, Pontén J, et al. A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol. 1999;155(5):1467-71. [DOI:10.1016/S0002-9440(10)65461-2]
  18. Bass BP, Engel KB, Greytak SR, Moore HM. A review of preanalytical factors affecting molecular, protein, and morphological analysis of formalin-fixed, paraffin-embedded (FFPE) tissue: how well do you know your FFPE specimen? Arch Pathol Lab Med. 2014;138(11):1520-30. [DOI:10.5858/arpa.2013-0691-RA] [PMID]
  19. Groelz D, Sobin L, Branton P, Compton C, Wyrich R, Rainen L. Non-formalin fixative versus formalin-fixed tissue: a comparison of histology and RNA quality. Exp Mol Pathol. 2013;94(1):188-94. [DOI:10.1016/j.yexmp.2012.07.002] [PMID]
  20. Kilpatrick CW. Noncryogenic preservation of mammalian tissues for DNA extraction: an assessment of storage methods. Biochem Genet. 2002;40(1-2):53-62. [DOI:10.1023/A:1014541222816] [PMID]
  21. Foss RD, Guha-Thakurta N, Conran RM, Gutman P. Effects of fixative and fixation time on the extraction and polymerase chain reaction amplification of RNA from paraffin-embedded tissue. Comparison of two housekeeping gene mRNA controls. Diagn Mol Pathol. 1994;3(3):148-55. [DOI:10.1097/00019606-199409000-00003] [PMID]
  22. Benchekroun M, DeGraw J, Gao J, Sun L, von Boguslawsky K, Leminen A, et al. Impact of fixative on recovery of mRNA from paraffin-embedded tissue. Diagn Mol Pathol. 2004;13(2):116-25. [DOI:10.1097/00019606-200406000-00008] [PMID]
  23. Li S, Tuck-Muller CM, Yan Q, Wertelecki W, Chen H. A rapid method for PCR amplification of DNA directly from cells fixed in Carnoy's fixative. Am J Med Genet. 1995;55(1):116-9. [DOI:10.1002/ajmg.1320550130] [PMID]
  24. Shibutani M, Uneyama C, Miyazaki K, Toyoda K, Hirose M. Methacarn fixation: a novel tool for analysis of gene expressions in paraffin-embedded tissue specimens. Lab Invest. 2000;80(2):199-208. [DOI:10.1038/labinvest.3780023] [PMID]
  25. Crisan D, Mattson JC. Retrospective DNA analysis using fixed tissue specimens. DNA and Cell Biology. 1993;12(5):455-64. [DOI:10.1089/dna.1993.12.455] [PMID]
  26. Boyanton Jr B, Crisan D. Sample Collection, Processing, and Storage for Molecular Genetic Testing. In: Kottke-Marchant K, Davis B, editors. Laboratory Hematology Practice. 1nd ed. West Sussex, UK: Wiley-Blackwell; 2012. p. 145-54. [DOI:10.1002/9781444398595.ch13]
  27. Layton C, Bancroft J, Suvarna S. Fixation of tissues. In: Suvarna S, Layton Ch, J. B, editors. Bancroft's Theory and Practice of Histological Techniques. Netherlands, Amsterdam: Elsevier; 2019. p. 40-63.
  28. Bonin S, Petrera F, Rosai J, Stanta G. DNA and RNA obtained from Bouin's fixed tissues. J Clin Pathol. 2005;58(3):313-6. [DOI:10.1136/jcp.2004.016477] [PMID] [PMCID]
  29. Herbert DJ, Nishiyama RH, Bagwell CB, Munson ME, Hitchcox SA, Lovett III EJ. Effects of several commonly used fixatives on DNA and total nuclear protein analysis by flow cytometry. Am J Clin Pathol. 1989;91(5):535-41. [DOI:10.1093/ajcp/91.5.535] [PMID]
  30. Singh VM, Salunga RC, Huang VJ, Tran Y, Erlander M, Plumlee P, et al. Analysis of the effect of various decalcification agents on the quantity and quality of nucleic acid (DNA and RNA) recovered from bone biopsies. Ann Diagn Pathol. 2013;17(4):322-6. [DOI:10.1016/j.anndiagpath.2013.02.001] [PMID]
  31. Spencer L, Bancroft J. Tissue processing. In: Suvarna S, Layton C, Bancroft J, editors. Bancroft's Theory and Practice of Histological Techniques. 7nd ed. Netherlands, Amsterdam: Elsevier Health Sciences; 2012. p. 105-23. [DOI:10.1016/B978-0-7020-4226-3.00006-8]
  32. Evers DL, He J, Kim YH, Mason JT, O'Leary TJ. Paraffin embedding contributes to RNA aggregation, reduced RNA yield, and low RNA quality. J Mol Diagn. 2011;13(6):687-94. [DOI:10.1016/j.jmoldx.2011.06.007] [PMID] [PMCID]
  33. Chung JY, Braunschweig T, Hewitt SM. Optimization of recovery of RNA from formalin-fixed, paraffin-embedded tissue. Diagn Mol Pathol. 2006;15(4):229-36. [DOI:10.1097/01.pdm.0000213468.91139.2d] [PMID]
  34. Fergenbaum JH, Garcia-Closas M, Hewitt SM, Lissowska J, Sakoda LC, Sherman ME. Loss of antigenicity in stored sections of breast cancer tissue microarrays. Cancer Epidemiol Biomarkers Prev. 2004;13(4):667-72.
  35. Klopfleisch R, Weiss A, Gruber A. Excavation of a buried treasure-DNA, mRNA, miRNA and protein analysis in formalin fixed, paraffin embedded tissues. Histol Histopathol. 2011;26(6):797-810.
  36. Piniewska D, Wojtas M, Polańska N, Stawowiak A, Konieczna-Waśkowska M, CZEPIEC M, et al. The comparison of paraffin dewaxing using methyl tert-butyl ether and xylene in DNA extraction from autopsy specimens. J Forensic Res. 2012;3(10):1-4. [DOI:10.4172/2157-7145.1000175]
  37. Stanta G, Schneider C. RNA extracted from paraffin-embedded human tissues is amenable to analysis by PCR amplification. Biotechniques. 1991;11(3):304, 6, 8.
  38. Goelz SE, Hamilton SR, Vogelstein B. Purification of DNA from formaldehyde fixed and paraffin embedded human tissue. Biochem Biophys Res Commun. 1985;130(1):118-26. [DOI:10.1016/0006-291X(85)90390-0]
  39. Ribeiro-Silva A, Zhang H, Jeffrey SS. RNA extraction from ten year old formalin-fixed paraffin-embedded breast cancer samples: a comparison of column purification and magnetic bead-based technologies. BMC Mol Biol. 2007;8(1):118. [DOI:10.1186/1471-2199-8-118] [PMID] [PMCID]
  40. Gilbert MTP, Haselkorn T, Bunce M, Sanchez JJ, Lucas SB, Jewell LD, et al. The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when? PloS one. 2007;2(6):e537. [DOI:10.1371/journal.pone.0000537] [PMID] [PMCID]
  41. Huijsmans CJ, Damen J, van der Linden JC, Savelkoul PH, Hermans MH. Comparative analysis of four methods to extract DNA from paraffin-embedded tissues: effect on downstream molecular applications. BMC Res Notes. 2010;3(1):239. [DOI:10.1186/1756-0500-3-239] [PMID] [PMCID]
  42. Páska C, Bögi K, Szilák L, Tokés A, Szabó E, Sziller I, et al. Effect of formalin, acetone, and RNAlater fixatives on tissue preservation and different size amplicons by real-time PCR from paraffin-embedded tissue. J Mol Diagn. 2004;13(4):234-40. [DOI:10.1097/01.pdm.0000134778.37729.9f] [PMID]
  43. Godfrey TE, Kim S-H, Chavira M, Ruff DW, Warren RS, Gray JW, et al. Quantitative mRNA expression analysis from formalin-fixed, paraffin-embedded tissues using 5′ nuclease quantitative reverse transcription-polymerase chain reaction. J Mol Diagn. 2000;2(2):84-91. [DOI:10.1016/S1525-1578(10)60621-6]
  44. Fan H, Gulley ML. DNA extraction from paraffin-embedded tissues. In: Killeen AA, editor. Molecular Pathology Protocols. 49. New York, USA: Springer; 2001. p. 1-4. [DOI:10.1385/1-59259-081-0:1] [PMID]
  45. Wright D, Manos M. Sample preparation from paraffin-embedded tissues. In: Innis M, Gelfand D, Sninsky J, White T, editors. PCR protocols: a guide to methods and applications. San Diego, USA: ACADEMIC PRESS; 1990. p. 153-8. [DOI:10.1016/B978-0-12-372180-8.50023-8]
  46. Rainen L, Arbique JC, Asthana D, Earley MC, Geiszler RL, Krieg-Schneider F, et al. MM13-A-Collection, transport, preparation, and storage of specimens for molecular methods: approved guideline. 1nd ed. Pennsylvania,USA: CLSI; 2005. 1-51 p.
  47. Atanesyan L, Steenkamer MJ, Horstman A, Moelans CB, Schouten JP, Savola SP. Optimal Fixation Conditions and DNA Extraction Methods for MLPA Analysis on FFPE Tissue-Derived DNA. Am J Clin Pathol. 2017;147(1):60-8. [DOI:10.1093/ajcp/aqw205] [PMID] [PMCID]
  48. Thavaraj S, Stokes A, Guerra E, Bible J, Halligan E, Long A, et al. Evaluation of human papillomavirus testing for squamous cell carcinoma of the tonsil in clinical practice. J Clin Pathol. 2011;64(4):308-12. [DOI:10.1136/jcp.2010.088450] [PMID]
  49. Kingsbury AE, Foster OJ, Nisbet AP, Cairns N, Bray L, Eve DJ, et al. Tissue pH as an indicator of mRNA preservation in human post-mortem brain. Mol Brain Res. 1995;28(2):311-8. [DOI:10.1016/0169-328X(94)00219-5]
  50. Hewitt SM, Lewis FA, Cao Y, Conrad RC, Cronin M, Danenberg KD, et al. Tissue handling and specimen preparation in surgical pathology: issues concerning the recovery of nucleic acids from formalin-fixed, paraffin-embedded tissue. Arch Pathol Lab Med. 2008;132(12):1929-35.
  51. Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC, et al. Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol. 2004;164(1):35-42. [DOI:10.1016/S0002-9440(10)63093-3]
  52. Watanabe M, Hashida S, Yamamoto H, Matsubara T, Ohtsuka T, Suzawa K, et al. Estimation of age-related DNA degradation from formalin-fixed and paraffin-embedded tissue according to the extraction methods. Exp Ther Med. 2017;14(3):2683-8. [DOI:10.3892/etm.2017.4797] [PMID] [PMCID]
  53. Wang W, Kumar P, SCHWARZ M, Malone G, Haworth A, KUMAR S. PCR amplification of 40-year-old paraffin-embedded tumor-tissues-comparison of 4 different DNA extraction and purification methods. Int J Oncol. 1994;5(3):453-7. [DOI:10.3892/ijo.5.3.453] [PMID]
  54. Buckingham L. Quality Assurance and Quality Control in the Molecular Laboratory. Molecular Diagnostics: Fundamentals, Methods, & Clinical Applications. Philadelphia,USA: F.A. Davis; 2007. p. 403-25.
  55. Greytak SR, Engel KB, Bass BP, Moore HM. Accuracy of Molecular Data Generated with FFPE Biospecimens: Lessons from the Literature. Cancer Res. 2015;75(8):1541-7. [DOI:10.1158/0008-5472.CAN-14-2378] [PMID] [PMCID]
  56. Bonnet J, Colotte M, Coudy D, Couallier V, Portier J, Morin B, et al. Chain and conformation stability of solid-state DNA: implications for room temperature storage. Nucleic Acids Res. 2010;38(5):1531-46. [DOI:10.1093/nar/gkp1060] [PMID] [PMCID]
  57. Colotte M, Coudy D, Tuffet S, Bonnet J. Adverse effect of air exposure on the stability of DNA stored at room temperature. Biopreserv Biobank. 2011;9(1):47-50. [DOI:10.1089/bio.2010.0028] [PMID]
  58. Clermont D, Santoni S, Saker S, Gomard M, Gardais E, Bizet C. Assessment of DNA encapsulation, a new room-temperature DNA storage method. Biopreserv Biobank. 2014;12(3):176-83. [DOI:10.1089/bio.2013.0082] [PMID] [PMCID]
  59. Fabre AL, Colotte M, Luis A, Tuffet S, Bonnet J. An efficient method for long-term room temperature storage of RNA. Eur J Hum Genet. 2014;22(3):379-85. [DOI:10.1038/ejhg.2013.145] [PMID] [PMCID]
  60. Beutler E, Gelbart T, Kuhl W. Interference of heparin with the polymerase chain reaction. Biotechniques. 1990;9(2):166.
  61. Al-Soud WA, Radstrom P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol. 2001;39(2):485-93. [DOI:10.1128/JCM.39.2.485-493.2001] [PMID] [PMCID]
  62. Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors-occurrence, properties and removal. J Apl Microb. 2012;113(5):1014-26. [DOI:10.1111/j.1365-2672.2012.05384.x] [PMID]
  63. Cai D, Behrmann O, Hufert F, Dame G, Urban G. Direct DNA and RNA detection from large volumes of whole human blood. Sci Rep. 2018;8(1):3410. [DOI:10.1038/s41598-018-21224-0] [PMID] [PMCID]
  64. Bonger PN, Killeen AA, Sabbath-Solitare M, Baptist SJ, Redondo TC, Caliendo AM, et al. Extraction of Nucleic Acids, Framework for Quality Assurance in Molecular Diagnostics, Cytomegalovirus. In: Coleman WB, Tsongalis GJ, editors. Molecular diagnostics : for the clinical laboratorian. New York, USA Humana Press/Springer Science & Business Media,; 2010. p. 25-30, 227-36, 473-82. [DOI:10.1385/1-59259-928-1:227]
  65. Yokota M, Tatsumi N, Nathalang O, Yamada T, Tsuda I. Effects of heparin on polymerase chain reaction for blood white cells. J Clin Lab Anal. 1999;13(3):133-40.;2-0 [DOI:10.1002/(SICI)1098-2825(1999)13:33.0.CO;2-0]
  66. Neumaier M, Braun A, Wagener C. Fundamentals of quality assessment of molecular amplification methods in clinical diagnostics. International Federation of Clinical Chemistry Scientific Division Committee on Molecular Biology Techniques. Clin Chem. 1998;44(1):12-26. [DOI:10.1093/clinchem/44.1.12] [PMID]
  67. Huang LH, Lin PH, Tsai KW, Wang LJ, Huang YH, Kuo HC, et al. The effects of storage temperature and duration of blood samples on DNA and RNA qualities. PLoS One. 2017;12(9):e0184692. [DOI:10.1371/journal.pone.0184692] [PMID] [PMCID]
  68. Kotikalapudi R, Patel RK. Comparative study of the influence of EDTA and sodium heparin on long term storage of cattle DNA. Cell J. 2015;17(1):181-6.
  69. Skogholt AH, Ryeng E, Erlandsen SE, Skorpen F, Schønberg SA, Sætrom P. Gene expression differences between PAXgene and Tempus blood RNA tubes are highly reproducible between independent samples and biobanks. BMC research notes. 2017;10(1):1-12. [DOI:10.1186/s13104-017-2455-6] [PMID] [PMCID]
  70. Malentacchi F, Ciniselli CM, Pazzagli M, Verderio P, Barraud L, Hartmann CC, et al. Influence of pre-analytical procedures on genomic DNA integrity in blood samples: the SPIDIA experience. Clin Chim Acta. 2015;440:205-10. [DOI:10.1016/j.cca.2014.12.004] [PMID]
  71. Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K. Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. J Forensic Sci. 1994;39(2):362-72. [DOI:10.1520/JFS13607J] [PMID]
  72. Gustafson S, Proper JA, Bowie EJ, Sommer SS. Parameters affecting the yield of DNA from human blood. Anal Biochem. 1987;165(2):294-9. [DOI:10.1016/0003-2697(87)90272-7]
  73. Di Pietro F, Ortenzi F, Tilio M, Concetti F, Napolioni V. Genomic DNA extraction from whole blood stored from 15-to 30-years at− 20 C by rapid phenol-chloroform protocol: A useful tool for genetic epidemiology studies. Mol Cell Probes. 2011;25(1):44-8. [DOI:10.1016/j.mcp.2010.10.003] [PMID]
  74. Nederhand RJ, Droog S, Kluft C, Simoons ML, de Maat MP, Investigators of the Et. Logistics and quality control for DNA sampling in large multicenter studies. J Thromb Haemost. 2003;1(5):987-91. [DOI:10.1046/j.1538-7836.2003.00216.x] [PMID]
  75. Permenter J, Ishwar A, Rounsavall A, Smith M, Faske J, Sailey CJ, et al. Quantitative analysis of genomic DNA degradation in whole blood under various storage conditions for molecular diagnostic testing. Mol Cell Probes. 2015;29(6):449-53. [DOI:10.1016/j.mcp.2015.07.002] [PMID]
  76. Vaught JB. Blood collection, shipment, processing, and storage. Cancer Epidemiol Biomarkers Prev. 2006;15(9):1582-4. [DOI:10.1158/1055-9965.EPI-06-0630] [PMID]
  77. Farkas DH, Kaul KL, Wiedbrauk DL, Kiechle FL. Specimen collection and storage for diagnostic molecular pathology investigation. Arch Pathol Lab Med. 1996;120(6):591-6.
  78. Vaught JB, Henderson MK. Biological sample collection, processing, storage and information management. IARC Sci Publ. 2011;163(163):23-42.
  79. Springer J, Morton CO, Perry M, Heinz WJ, Paholcsek M, Alzheimer M, et al. Multicenter comparison of serum and whole-blood specimens for detection of Aspergillus DNA in high-risk hematological patients. J Clin Microbiol. 2013;51(5):1445-50. [DOI:10.1128/JCM.03322-12] [PMID] [PMCID]
  80. Hasan MR, Tan R, Al-Rawahi GN, Thomas E, Tilley P. Short-term stability of pathogen-specific nucleic acid targets in clinical samples. J Clin Microbiol. 2012;50(12):4147-50. [DOI:10.1128/JCM.02659-12] [PMID] [PMCID]
  81. Jin Y, Chen K, Wang Z, Wang Y, Liu J, Lin L, et al. DNA in serum extracellular vesicles is stable under different storage conditions. BMC Cancer. 2016;16(1):753. [DOI:10.1186/s12885-016-2783-2] [PMID] [PMCID]
  82. Sozzi G, Roz L, Conte D, Mariani L, Andriani F, Verderio P, et al. Effects of prolonged storage of whole plasma or isolated plasma DNA on the results of circulating DNA quantification assays. J Natl Cancer Inst. 2005;97(24):1848-50. [DOI:10.1093/jnci/dji432] [PMID]
  83. Risberg B, Tsui DWY, Biggs H, Ruiz-Valdepenas Martin de Almagro A, Dawson SJ, Hodgkin C, et al. Effects of Collection and Processing Procedures on Plasma Circulating Cell-Free DNA from Cancer Patients. J Mol Diagn. 2018;20(6):883-92. [DOI:10.1016/j.jmoldx.2018.07.005] [PMID] [PMCID]
  84. Tsui NB, Ng EK, Lo YM. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem. 2002;48(10):1647-53. [DOI:10.1093/clinchem/48.10.1647] [PMID]
  85. Ross KS, Haites NE, Kelly KF. Repeated freezing and thawing of peripheral blood and DNA in suspension: effects on DNA yield and integrity. J Med Genet. 1990;27(9):569-70. [DOI:10.1136/jmg.27.9.569] [PMID] [PMCID]
  86. Chan KC, Yeung SW, Lui WB, Rainer TH, Lo YM. Effects of preanalytical factors on the molecular size of cell-free DNA in blood. Clin Chem. 2005;51(4):781-4. [DOI:10.1373/clinchem.2004.046219] [PMID]
  87. Kopreski MS, Benko FA, Kwak LW, Gocke CD. Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res. 1999;5(8):1961-5.
  88. Parekh BS, K.; Patel, S.; Nkengasong, J.; Vercaheren, G.; Sands, A.; Ghys, P, et al. Guidelines for Using HIV Testing Technologies in Surveillance:Selection, Evaluation and Implementation. update ed. Geneva, Switzerland2009 13-9 p.
  89. Endler G, Slavka G, and Garland S, Tabrizi S. Stability of the specimen during preanalytics and Pathogens relevant in sexually transmitted infections. In: Kessler HH, editor. Molecular Diagnostics of Infectious Diseases. Berlin/New York: De Gruyter; 2010. p. 25-33, 177-84.
  90. Holodniy M, Mole L, Yen-Lieberman B, Margolis D, Starkey C, Carroll R, et al. Comparative stabilities of quantitative human immunodeficiency virus RNA in plasma from samples collected in VACUTAINER CPT, VACUTAINER PPT, and standard VACUTAINER tubes. J Clin Microbiol. 1995;33(6):1562-6. [DOI:10.1128/JCM.33.6.1562-1566.1995] [PMID] [PMCID]
  91. Ginocchio CC, Wang XP, Kaplan MH, Mulligan G, Witt D, Romano JW, et al. Effects of specimen collection, processing, and storage conditions on stability of human immunodeficiency virus type 1 RNA levels in plasma. J Clin Microbiol. 1997;35(11):2886-93. [DOI:10.1128/JCM.35.11.2886-2893.1997] [PMID] [PMCID]
  92. José M, Gajardo R, Jorquera JI. Stability of HCV, HIV-1 and HBV nucleic acids in plasma samples under long-term storage. Biologicals. 2005;33(1):9-16. [DOI:10.1016/j.biologicals.2004.10.003] [PMID]
  93. Comert F, Aktas E, Terzi HA, Kulah C, Ustundag Y, Kokturk F, et al. Evaluation of hepatitis C virus RNA stability in room temperature and multiple freeze-thaw cycles by COBAS AmpliPrep/COBAS TaqMan HCV. Diagn Microbiol Infect Dis. 2013;75(1):81-5. [DOI:10.1016/j.diagmicrobio.2012.09.017] [PMID]
  94. José M, Curtu S, Gajardo R, Jorquera JI. The effect of storage at different temperatures on the stability of Hepatitis C virus RNA in plasma samples. Biologicals. 2003;31(1):1-8. [DOI:10.1016/S1045-1056(02)00067-2]
  95. Gessoni G, Barin P, Valverde S, Giacomini A, Di Natale C, Orlandini E, et al. Biological qualification of blood units: considerations about the effects of sample's handling and storage on stability of nucleic acids. TRANSFUS APHER SCI. 2004;30(3):197-203. [DOI:10.1016/j.transci.2003.11.010] [PMID]
  96. Krajden M, Minor JM, Rifkin O, Comanor L. Effect of multiple freeze-thaw cycles on hepatitis B virus DNA and hepatitis C virus RNA quantification as measured with branched-DNA technology. J Clin Microb. 1999;37(6):1683-6. [DOI:10.1128/JCM.37.6.1683-1686.1999] [PMID] [PMCID]
  97. Sanlidag T, Akcali S, Ozbakkaloglu B. Serum hepatitis B DNA: stability in relation to multiple freeze-thaw procedures. J Virol Meth. 2005;123(1):49-52. [DOI:10.1016/j.jviromet.2004.09.006] [PMID]
  98. Austin MA, Ordovas JM, Eckfeldt JH, Tracy R, Boerwinkle E, Lalouel JM, et al. Guidelines of the National Heart, Lung, and Blood Institute Working Group on Blood Drawing, Processing, and Storage for Genetic Studies. Am J Epidemiol. 1996;144(5):437-41. [DOI:10.1093/oxfordjournals.aje.a008948] [PMID]
  99. Hämäläinen MM, Eskola JU, Hellman J, Pulkki K. Major interference from leukocytes in reverse transcription-PCR identified as neurotoxin ribonuclease from eosinophils: detection of residual chronic myelogenous leukemia from cell lysates by use of an eosinophil-depleted cell preparation. Clin Chem. 1999;45(4):465-71. [DOI:10.1093/clinchem/45.4.465] [PMID]
  100. Guder WG, Narayanan S, Wisser H, Zawta B. Special aspects in molecular biology. Samples: From the Patient to the Laboratory : the Impact of Preanalytical Variables on the Quality of Laboratory Results. 3nd ed. Weinheim, Germany: Wiley-VCH; 2003. p. 63-5. [DOI:10.1002/9783527612505]
  101. Langebrake C, Gunther K, Lauber J, Reinhardt D. Preanalytical mRNA stabilization of whole bone marrow samples. Clin Chem. 2007;53(4):587-93. [DOI:10.1373/clinchem.2006.078592] [PMID]
  102. Breit S, Nees M, Schaefer U, Pfoersich M, Hagemeier C, Muckenthaler M, et al. Impact of pre-analytical handling on bone marrow mRNA gene expression. Br J Haematol. 2004;126(2):231-43. [DOI:10.1111/j.1365-2141.2004.05017.x] [PMID]
  103. Lee SH, Erber WN, Porwit A, Tomonaga M, Peterson LC, International Council for Standardization In H. ICSH guidelines for the standardization of bone marrow specimens and reports. Int J Lab Hematol. 2008;30(5):349-64. [DOI:10.1111/j.1751-553X.2008.01100.x] [PMID]
  104. Radhakrishnan D, Yamashita C, Gillio-Meina C, Fraser DD. Translational research in pediatrics III: bronchoalveolar lavage. Pediatrics. 2014;134(1):135-54. [DOI:10.1542/peds.2013-1911] [PMID]
  105. Verweij PE, Latge J-P, Rijs A, Melchers W, De Pauw BE, Hoogkamp-Korstanje J, et al. Comparison of antigen detection and PCR assay using bronchoalveolar lavage fluid for diagnosing invasive pulmonary aspergillosis in patients receiving treatment for hematological malignancies. J Clin Microb. 1995;33(12):3150-3. [DOI:10.1128/JCM.33.12.3150-3153.1995] [PMID] [PMCID]
  106. Heath EM, Morken NW, Campbell KA, Tkach D, Boyd EA, Strom DA. Use of buccal cells collected in mouthwash as a source of DNA for clinical testing. Arch Pathol Lab Med. 2001;125(1):127-33.
  107. Nataša KG MM, Milena S, Davidović S, Dijana T. Direct PCR amplification of the HVSI region in mitochondrial DNA from buccal cell swabs. Arch Biol Sci. 2012;64(3):851-8. [DOI:10.2298/ABS1203851G]
  108. Steinberg K, Beck J, Nickerson D, Garcia-Closas M, Gallagher M, Caggana M, et al. DNA banking for epidemiologic studies: a review of current practices. Epidemiology. 2002;13(3):246-54. [DOI:10.1097/00001648-200205000-00003] [PMID]
  109. García-Closas M, Egan KM, Abruzzo J, Newcomb PA, Titus-Ernstoff L, Franklin T, et al. Collection of genomic DNA from adults in epidemiological studies by buccal cytobrush and mouthwash. Cancer Epidemiol Biomarkers Prev. 2001;10(6):687-96.
  110. Lum A, Le Marchand L. A simple mouthwash method for obtaining genomic DNA in molecular epidemiological studies. Cancer Epidemiol Biomarkers Prev. 1998;7(8):719-24.
  111. Beckett SM, Laughton SJ, Pozza LD, McCowage GB, Marshall G, Cohn RJ, et al. Buccal swabs and treated cards: methodological considerations for molecular epidemiologic studies examining pediatric populations. Am J Epidemiol. 2008;167(10):1260-7. [DOI:10.1093/aje/kwn012] [PMID]
  112. Hansen TV, Simonsen MK, Nielsen FC, Hundrup YA. Collection of blood, saliva, and buccal cell samples in a pilot study on the Danish nurse cohort: comparison of the response rate and quality of genomic DNA. Cancer Epidemiol Biomarkers Prev. 2007;16(10):2072-6. [DOI:10.1158/1055-9965.EPI-07-0611] [PMID]
  113. da Cunha Santos G. FTA cards for preservation of nucleic acids for molecular assays: a review on the use of cytologic/tissue samples. Arch Pathol Lab Med. 2018;142(3):308-12. [DOI:10.5858/arpa.2017-0303-RA] [PMID]
  114. Harty LC, Garcia-Closas M, Rothman N, Reid YA, Tucker MA, Hartge P. Collection of buccal cell DNA using treated cards. Cancer Epidemiol Biomarkers Prev. 2000;9(5):501-6.
  115. Boyanton Jr B, Rushton J. Molecular Techniques in Hematopathology. In: Crisan D, editor. Hematopathology: Genomic Mechanisms of Neoplastic Diseases. New York, USA: Humana press/Springer press; 2010. p. 1-38. [DOI:10.1007/978-1-60761-262-9_1]
  116. O'Leary TJ, Ben-Ezra J, Domer PH, Fletcher JA, Griffin CA, Kaul K, et al. Specimen Transport and Storage. In: Polgar P, editor. Nucleic acid amplification assays for molecular hematopathology; approved guideline. 23. Pennsylvania, USA: CLSI 2003. p. 8.
  117. Sun F, Reichenberger EJ. Saliva as a source of genomic DNA for genetic studies: review of current methods and applications. Oral Health Dent Manag. 2014;13(2):217-22.
  118. Chen D, Song N, Ni R, Zhao J, Hu J, Lu Q, et al. Saliva as a sampling source for the detection of leukemic fusion transcripts. J Transl Med. 2014;12(1):1-5. [DOI:10.1186/s12967-014-0321-z] [PMID] [PMCID]
  119. Maron JL, Johnson KL. Comparative performance analyses of commercially available products for salivary collection and nucleic acid processing in the newborn. Biotech Histochem. 2015;90(8):581-6. [DOI:10.3109/10520295.2015.1048289] [PMID] [PMCID]
  120. Cytomegalovirus (CMV) and Congenital CMV Infection, Laboratory Diagnosis of CMV Infection for Persons ≥12 Months of Age: CDC; 6 June 2018 [30 Nov 2019]. Available from:
  121. Pang Y, Du J, Zhang ZY, Ou XC, Li Q, Xia H, et al. The feasibility of sputum transportation system in China: effect of sputum storage on the mycobacterial detection. Biomed Environ Sci. 2014;27(12):982-6.
  122. Kim TH, Kubica GP. Long-term preservation and storage of mycobacteria. Appl Microbiol. 1972;24(3):311-7. [DOI:10.1128/AEM.24.3.311-317.1972] [PMID] [PMCID]
  123. Guio H, Okayama H, Ashino Y, Saitoh H, Xiao P, Miki M, et al. Method for efficient storage and transportation of sputum specimens for molecular testing of tuberculosis. Int J Tuberc Lung Dis. 2006;10(8):906-10.
  124. Williams DL, Gillis TP, Dupree WG. Ethanol fixation of sputum sediments for DNA-based detection of Mycobacterium tuberculosis. J Clin Microbiol. 1995;33(6):1558-61. [DOI:10.1128/JCM.33.6.1558-1561.1995] [PMID] [PMCID]
  125. Rakotosamimanana N, Rabodoarivelo MS, Palomino JC, Martin A, Razanamparany VR. Exploring tuberculosis by molecular tests on DNA isolated from smear microscopy slides. Int J Infect Dis. 2017;56:248-52. [DOI:10.1016/j.ijid.2016.12.005] [PMID]
  126. Stinson KW, Eisenach K, Kayes S, Siddiqi S, Nakashima S, Hashizume H, et al. A publication of the Global Laboratory Initiative a Working Group of the Stop TB Partnership. Mycobacteriology Laboratory Manual. World Health Organization; 2014.
  127. Kirschner P, Rosenau J, Springer B, Teschner K, Feldmann K, Bottger EC. Diagnosis of mycobacterial infections by nucleic acid amplification: 18-month prospective study. J Clin Microbiol. 1996;34(2):304-12. [DOI:10.1128/JCM.34.2.304-312.1996] [PMID] [PMCID]
  128. Monleau M, Butel C, Delaporte E, Boillot F, Peeters M. Effect of storage conditions of dried plasma and blood spots on HIV-1 RNA quantification and PCR amplification for drug resistance genotyping. J Antimicrob Chemother. 2010;65(8):1562-6. [DOI:10.1093/jac/dkq205] [PMID]
  129. Gibellini D, De Crignis E, Re MC. Guidelines for the Qualitative Detection of Viral Genomes in Dried Blood Spots. In: MacKenzie C, Henrich B, editors. Diagnosis of Sexually Transmitted Diseases. 903. New York, USA: Humana/Springer; 2012. p. 21-34. [DOI:10.1007/978-1-61779-937-2_2] [PMID]
  130. Mbida AD, Sosso S, Flori P, Saoudin H, Lawrence P, Monny-Lobé M, et al. Measure of viral load by using the Abbott Real-Time HIV-1 assay on dried blood and plasma spot specimens collected in 2 rural dispensaries in Cameroon. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2009;52(1):9-16. [DOI:10.1097/QAI.0b013e3181aeccbc] [PMID]
  131. Brambilla D, Jennings C, Aldrovandi G, Bremer J, Comeau AM, Cassol SA, et al. Multicenter evaluation of use of dried blood and plasma spot specimens in quantitative assays for human immunodeficiency virus RNA: measurement, precision, and RNA stability. J Clin Microb. 2003;41(5):1888-93. [DOI:10.1128/JCM.41.5.1888-1893.2003] [PMID] [PMCID]
  132. O'Shea S, Mullen J, Corbett K, Chrystie I, Newell M, Banatvala J. Use of dried whole blood spots for quantification of HIV-1 RNA. AIDS. 1999;13(5):630. [DOI:10.1097/00002030-199904010-00019] [PMID]
  133. Youngpairoj AS, Masciotra S, Garrido C, Zahonero N, De Mendoza C, García-Lerma JG. HIV-1 drug resistance genotyping from dried blood spots stored for 1 year at 4° C. J Antimicrob Chemother. 2008;61(6):1217-20. [DOI:10.1093/jac/dkn100] [PMID] [PMCID]
  134. Choo JM, Leong LE, Rogers GB. Sample storage conditions significantly influence faecal microbiome profiles. Scientific Reports. 2015;5:16350. [DOI:10.1038/srep16350] [PMID] [PMCID]
  135. Tedjo DI, Jonkers DM, Savelkoul PH, Masclee AA, van Best N, Pierik MJ, et al. The effect of sampling and storage on the fecal microbiota composition in healthy and diseased subjects. PLoS One. 2015;10(5):e0126685. [DOI:10.1371/journal.pone.0126685] [PMID] [PMCID]
  136. Kim D, Hofstaedter CE, Zhao C, Mattei L, Tanes C, Clarke E, et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome. 2017;5(1):52. [DOI:10.1186/s40168-017-0267-5] [PMID] [PMCID]
  137. Wesolowska-Andersen A, Bahl MI, Carvalho V, Kristiansen K, Sicheritz-Pontén T, Gupta R, et al. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome. 2014;2(1):19. [DOI:10.1186/2049-2618-2-19] [PMID] [PMCID]
  138. Dore J ES, Levenez F, Pelletier E, Alberti A, Bertrand L,et al. IHMS_SOP 02 V1: standard operating procedure for fecal samples self-collection, laboratory analysis handled within 4 hours (x_ 4 hours) 2015 [30 Nov 2019]. Available from:
  139. Stool Specimens - Molecular Diagnosis [27 Nov 2019]. Available from:
  140. Wu W-K, Chen C-C, Panyod S, Chen R-A, Wu M-S, Sheen L-Y, et al. Optimization of fecal sample processing for microbiome study-the journey from bathroom to bench. J Formos Med Assoc. 2019;118(2):545-55. [DOI:10.1016/j.jfma.2018.02.005] [PMID]
  141. Song SJ, Amir A, Metcalf JL, Amato KR, Xu ZZ, Humphrey G, et al. Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies. mSystems. 2016;1(3):e00021-16. [DOI:10.1128/mSystems.00021-16] [PMID] [PMCID]
  142. Flores R, Shi J, Yu G, Ma B, Ravel J, Goedert JJ, et al. Collection media and delayed freezing effects on microbial composition of human stool. Microbiome. 2015;3(1):33. [DOI:10.1186/s40168-015-0092-7] [PMID] [PMCID]
  143. Nechvatal JM, Ram JL, Basson MD, Namprachan P, Niec SR, Badsha KZ, et al. Fecal collection, ambient preservation, and DNA extraction for PCR amplification of bacterial and human markers from human feces. J Microbiol Methods. 2008;72(2):124-32. [DOI:10.1016/j.mimet.2007.11.007] [PMID]
  144. Vogtmann E, Chen J, Amir A, Shi J, Abnet CC, Nelson H, et al. Comparison of Collection Methods for Fecal Samples in Microbiome Studies. Am J Epidemiol. 2017;185(2):115-23. [DOI:10.1093/aje/kww177] [PMID] [PMCID]
  145. Shaw AG, Sim K, Powell E, Cornwell E, Cramer T, McClure ZE, et al. Latitude in sample handling and storage for infant faecal microbiota studies: the elephant in the room? Microbiome. 2016;4(1):40. [DOI:10.1186/s40168-016-0186-x] [PMID] [PMCID]
  146. Cannas A, Kalunga G, Green C, Calvo L, Katemangwe P, Reither K, et al. Implications of storing urinary DNA from different populations for molecular analyses. PLoS One. 2009;4(9):e6985. [DOI:10.1371/journal.pone.0006985] [PMID] [PMCID]
  147. Bosschieter J, Bach S, Bijnsdorp IV, Segerink LI, Rurup WF, van Splunter AP, et al. A protocol for urine collection and storage prior to DNA methylation analysis. PLoS One. 2018;13(8):e0200906. [DOI:10.1371/journal.pone.0200906] [PMID] [PMCID]
  148. Black CM. Current methods of laboratory diagnosis of Chlamydia trachomatis infections. Clin Microbiol Rev. 1997;10(1):160-84. [DOI:10.1128/CMR.10.1.160] [PMID] [PMCID]
  149. Brisuda A, Pazourkova E, Soukup V, Horinek A, Hrbáček J, Capoun O, et al. Urinary cell-free DNA quantification as non-invasive biomarker in patients with bladder cancer. Urol Int. 2016;96(1):25-31. [DOI:10.1159/000438828] [PMID]
  150. Yokoi K, Yamashita K, Watanabe M. Analysis of DNA Methylation Status in Bodily Fluids for Early Detection of Cancer. Int J Mol Sci. 2017;18(4):735. [DOI:10.3390/ijms18040735] [PMID] [PMCID]
  151. Morré SA, van Valkengoed IG, de Jong A, Boeke AJP, van Eijk JT, Meijer CJ, et al. Mailed, home-obtained urine specimens: a reliable screening approach for detecting asymptomatic Chlamydia trachomatis infections. J Clin Microb. 1999;37(4):976-80. [DOI:10.1128/JCM.37.4.976-980.1999] [PMID] [PMCID]
  152. Ingersoll J, Bythwood T, Abdul-Ali D, Wingood GM, Diclemente RJ, Caliendo AM. Stability of Trichomonas vaginalis DNA in urine specimens. J Clin Microbiol. 2008;46(5):1628-30. [DOI:10.1128/JCM.02486-07] [PMID] [PMCID]
  153. Martínez-Fernández M, Paramio JM, Dueñas M. RNA detection in urine: from RNA extraction to good normalizer molecules. J Mol Diagn. 2016;18(1):15-22. [DOI:10.1016/j.jmoldx.2015.07.008] [PMID]
  154. Juan D, Alexe G, Antes T, Liu H, Madabhushi A, Delisi C, et al. Identification of a microRNA panel for clear-cell kidney cancer. Urology. 2010;75(4):835-41. [DOI:10.1016/j.urology.2009.10.033] [PMID]
  155. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urologic Oncology. 2010;28:655-61. [DOI:10.1016/j.urolonc.2009.01.027] [PMID]
  156. Yun SJ, Jeong P, Kim W-T, Kim TH, Lee Y-S, Song PH, et al. Cell-free microRNAs in urine as diagnostic and prognostic biomarkers of bladder cancer. Int J Oncol. 2012;41(5):1871-8. [DOI:10.3892/ijo.2012.1622] [PMID]
  157. Mall C, Rocke DM, Durbin-Johnson B, Weiss RH. Stability of miRNA in human urine supports its biomarker potential. Biomark Med. 2013;7(4):623-31. [DOI:10.2217/bmm.13.44] [PMID] [PMCID]
  158. Zhao A, Péoc'h M, Cottier M, Genin C, Mottet N, Li G. Cell‐free RNA content in urine as a possible molecular diagnostic tool for clear cell renal cell carcinoma. Int J Cancer. 2015;136(11):2610-5. [DOI:10.1002/ijc.29313] [PMID]
  159. Ross SA, Ahmed A, Palmer AL, Michaels MG, Sanchez PJ, Bernstein DI, et al. Detection of congenital cytomegalovirus infection by real-time polymerase chain reaction analysis of saliva or urine specimens. J Infect Dis. 2014;210(9):1415-8. [DOI:10.1093/infdis/jiu263] [PMID] [PMCID]
  160. Schlesinger Y, Halle D, Eidelman A, Reich D, Dayan D, Rudensky B, et al. Urine polymerase chain reaction as a screening tool for the detection of congenital cytomegalovirus infection. Arch Dis Child Fetal Neonatal Ed. 2003;88(5):F371-F4. [DOI:10.1136/fn.88.5.F371] [PMID] [PMCID]
  161. Landau Z, Gross R, Sanilevich A, Friedmann A, Mitrani-Rosenbaum S. Presence of infective Epstein-Barr virus in the urine of patients with infectious mononucleosis. J Med Virol. 1994;44(3):229-33. [DOI:10.1002/jmv.1890440303] [PMID]
  162. Domeika M, Bashmakova M, Savicheva A, Kolomiec N, Sokolovskiy E, Hallen A, et al. Guidelines for the laboratory diagnosis of genital herpes in eastern European countries. Euro Surveill. 2010;15(44):19703. [DOI:10.2807/ese.15.44.19703-en]
  163. Freeman B, Smith N, Curtis C, Huckett L, Mill J, Craig IW. DNA from buccal swabs recruited by mail: evaluation of storage effects on long-term stability and suitability for multiplex polymerase chain reaction genotyping. Behav Genet. 2003;33(1):67-72. [DOI:10.1023/A:1021055617738] [PMID]
  164. Wise J. Cheek swab can detect early signs of cancer, study indicates. Bmj. 2015;350:h2644. [DOI:10.1136/bmj.h2644] [PMID]
  165. Teschendorff AE, Yang Z, Wong A, Pipinikas CP, Jiao Y, Jones A, et al. Correlation of Smoking-Associated DNA Methylation Changes in Buccal Cells With DNA Methylation Changes in Epithelial Cancer. JAMA Oncol. 2015;1(4):476-85. [DOI:10.1001/jamaoncol.2015.1053] [PMID]
  166. Specimen Collection, Storage, and Shipment Collecting Specimens for Suspected Mumps Cases: CDC; 2016 [30 Nov 2019]. Available from:
  167. Ruiz CA, Chaney ME, Tosi AJ. Medical-grade buccal swabs versus drugstore cotton swabs: No difference in DNA yield. MethodsX. 2018;5:39-42. [DOI:10.1016/j.mex.2018.01.006] [PMID] [PMCID]
  168. Freeman B, Powell J, Ball D, Hill L, Craig I, Plomin R. DNA by mail: an inexpensive and noninvasive method for collecting DNA samples from widely dispersed populations. Behav Genet. 1997;27(3):251-7. [DOI:10.1023/A:1025614231190] [PMID]
  169. Na HK, Kim M, Chang SS, Kim SY, Park JY, Chung MW, et al. Tobacco smoking-response genes in blood and buccal cells. Toxicol Lett. 2015;232(2):429-37. [DOI:10.1016/j.toxlet.2014.10.005] [PMID]
  170. DeByle C, Bulkow L, Miernyk K, Chikoyak L, Hummel KB, Hennessy T, et al. Comparison of nasopharyngeal flocked swabs and nasopharyngeal wash collection methods for respiratory virus detection in hospitalized children using real-time polymerase chain reaction. J Virol Meth. 2012;185(1):89-93. [DOI:10.1016/j.jviromet.2012.06.009] [PMID] [PMCID]
  171. Sung RY, Chan PK, Choi KC, Yeung AC, Li AM, Tang JW, et al. Comparative study of nasopharyngeal aspirate and nasal swab specimens for diagnosis of acute viral respiratory infection. J Clin Microbiol. 2008;46(9):3073-6. [DOI:10.1128/JCM.01209-08] [PMID] [PMCID]
  172. Hernes SS, Quarsten H, Hagen E, Lyngroth AL, Pripp AH, Bjorvatn B, et al. Swabbing for respiratory viral infections in older patients: a comparison of rayon and nylon flocked swabs. Eur J Clin Microbiol Infect Dis. 2011;30(2):159-65. [DOI:10.1007/s10096-010-1064-2] [PMID] [PMCID]
  173. Cloud JL, Hymas W, Carroll KC. Impact of nasopharyngeal swab types on detection of Bordetella pertussis by PCR and culture. J Clin Microbiol. 2002;40(10):3838-40. [DOI:10.1128/JCM.40.10.3838-3840.2002] [PMID] [PMCID]
  174. Information on rapid molecular assays, RT-PCR, and Other Molecular Assays for Diagnosis of Influenza Virus Infection: CDC; 2016 [30 Nov 2019]. Available from:
  175. Gaydos CA, Crotchfelt KA, Shah N, Tennant M, Quinn TC, Gaydos JC, et al. Evaluation of dry and wet transported intravaginal swabs in detection of Chlamydia trachomatis and Neisseria gonorrhoeae infections in female soldiers by PCR. J Clin Microbiol. 2002;40(3):758-61. [DOI:10.1128/JCM.40.3.758-761.2002] [PMID] [PMCID]
  176. Aslanzadeh J, Jones M. Comparison of M4 and M4RT media for transporting cervical swab samples for PCR detection of Chlamydia trachomatis and Neisseria gonorrhoeae. Ann Clin Lab Sci. 2002;32(1):61-4.
  177. Lin C-Q, Zeng X, Cui J-F, Liao G-D, Wu Z-N, Gao Q-Q, et al. Stability study of cervical specimens collected by swab and stored dry followed by human papillomavirus DNA detection using the cobas 4800 test. J Clin Microb. 2017;55(2):568-73. [DOI:10.1128/JCM.02025-16] [PMID] [PMCID]
  178. Frati P, Fineschi V, Di Sanzo M, La Russa R, Scopetti M, Severi FM, et al. Preimplantation and prenatal diagnosis, wrongful birth and wrongful life: a global view of bioethical and legal controversies. Hum Reprod Update. 2017;23(3):338-57. [DOI:10.1093/humupd/dmx002] [PMID]
  179. Kidszun A, Linebarger J, Walter JK, Paul NW, Fruth A, Mildenberger E, et al. What if the prenatal diagnosis of a lethal anomaly turns out to be wrong? Pediatrics. 2016;137(5):e20154514. [DOI:10.1542/peds.2015-4514] [PMID]
  180. Johnson SR, Elkins TE. Ethical issues in prenatal diagnosis. Clin Obstet Gynecol. 1988;31(2):408-17. [DOI:10.1097/00003081-198806000-00014] [PMID]
  181. Parsons LK, L. Guideline for Prenatal Diagnostic Testing (Chorionic Villus Sampling and Amniocentesis) and Communication of Results, in Nottingham University Nottingham university 2015.
  182. Nagan N, Faulkner NE, Curtis C, Schrijver I, Committee MCCGWGotAfMPCP. Laboratory guidelines for detection, interpretation, and reporting of maternal cell contamination in prenatal analyses a report of the association for molecular pathology. J Mol Diagn. 2011;13(1):7-11. [DOI:10.1016/j.jmoldx.2010.11.013] [PMID] [PMCID]
  183. Alfirevic Z, Navaratnam K, Mujezinovic F. Amniocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane Database Syst Rev . 2017;(9). [DOI:10.1002/14651858.CD003252.pub2] [PMCID]
  184. Ramachandra DL, Shaw SS, Shangaris P, Loukogeorgakis S, Guillot PV, Coppi PD, et al. In utero therapy for congenital disorders using amniotic fluid stem cells. Front Pharmacol. 2014;5:270. [DOI:10.3389/fphar.2014.00270] [PMID] [PMCID]
  185. Simpson JL, Rechitsky S. Prenatal genetic testing and treatment for congenital adrenal hyperplasia. Fertil Steril. 2019;111(1):21-3. [DOI:10.1016/j.fertnstert.2018.11.041] [PMID]
  186. Schrijver I, Cherny SC, Zehnder JL. Testing for maternal cell contamination in prenatal samples: a comprehensive survey of current diagnostic practices in 35 molecular diagnostic laboratories. J Mol Diagn. 2007;9(3):394-400. [DOI:10.2353/jmoldx.2007.070017] [PMID] [PMCID]
  187. Committee CMG. CCMG molecular genetics guidelines. 2002.
  188. Abbasi M, Shamsi Gooshki E, Allahbedashti N. Abortion in Iranian legal system: a review. Iran J Allergy Asthma Immunol. 2014;13(1):71-84.
  189. Kamath MS, Pradhan S, Edison ES, Velayudhan SR, Antonisamy B, Karthikeyan M, et al. Chorionic villous sampling through transvaginal ultrasound approach: A retrospective analysis of 1138 cases. J Obstet Gynaecol Res. 2016;42(10):1229-35. [DOI:10.1111/jog.13070] [PMID]
  190. George K, S. George S, James C, Fernandes HA, Shaji R, Srivastava A, et al. Transvaginal Chorionic Villus Sampling-an Alternative Approach. Aust N Z J Obstet Gynaecol. 1999;39(4):487-9. [DOI:10.1111/j.1479-828X.1999.tb03140.x] [PMID]
  191. Bricarelli FD, Hastings RJ, Kristoffersson U, Cavani S. Cytogenetic Guidelines and Quality Assurance A common European framework for quality assessment for constitutional and acquired cytogenetic investigations.
  192. Winsor EJ, Silver MP, Theve R, Wright M, Ward BE. Maternal cell contamination in uncultured amniotic fluid. Prenat Diagn. 1996;16(1):49-54.;2-U [DOI:10.1002/(SICI)1097-0223(199601)16:13.0.CO;2-U]
  193. Ashoor G, Syngelaki A, Poon L, Rezende J, Nicolaides K. Fetal fraction in maternal plasma cell‐free DNA at 11-13 weeks' gestation: relation to maternal and fetal characteristics. Ultrasound Obstet Gynecol. 2013;41(1):26-32. [DOI:10.1002/uog.12331] [PMID]
  194. Wong D, Moturi S, Angkachatchai V, Mueller R, DeSantis G, van den Boom D, et al. Optimizing blood collection, transport and storage conditions for cell free DNA increases access to prenatal testing. Clin Biochem. 2013;46(12):1099-104. [DOI:10.1016/j.clinbiochem.2013.04.023] [PMID]
  195. Ehrich M, Deciu C, Zwiefelhofer T, Tynan JA, Cagasan L, Tim R, et al. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am J Obstet Gynecol. 2011;204(3):205 e1-11.
  196. Gregg AR, Skotko BG, Benkendorf JL, Monaghan KG, Bajaj K, Best RG, et al. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet Med. 2016;18(10):1056-65. [DOI:10.1038/gim.2016.97] [PMID]