Document Type: Original Research

Authors

Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran

10.30699/ijp.2020.119627.2298

Abstract

Background & Objective:  Acute lymphoblastic leukemia (ALL) is a malignant disease that arises from various mutations in B or T-lymphoid progenitors. MicroRNAs (miRNAs) regulate gene expression by binding to the 3' untranslated region of protein-coding genes. Dysregulation of miRNA expression may result in the development of cancerous phenotypes. Therefore, for the first time in this field, the present study aims to investigate the effect of overexpression of miR-506 in Jurkat (acute T cell leukemia) cell line.
Methods:  In this study, Jurkat cell lines were cultured in RPMI-1640 medium. Next, miR-506 was transfected with concentrations of 50 and 100 nM with Lipofectamine 2000. The accuracy of the transfection was confirmed by the transfection of siRNA conjugated with FITC. 48 h after transfection, the cells were prepared for other tests (flow cytometry, MTT assay, and RNA extraction). The expression level of miR-506 in the cells was analyzed using the quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Finally, SPSS 21 software was used for the data analysis.
Results:  According to our results, the viability of cells in concentrations of 50 and 100 nM was significantly higher than the control group. By overexpression of miR-506, the expressions of pro-apoptotic genes (p53, p21) and anti-apoptotic gene B-cell lymphoma-2 (BCL-2) are decreased and increased, respectively.
Conclusion:  This study showed that miR-506 may function as an oncogenic miRNA in the T- ALL cell line. In conclusion, overexpression of miR-506 leads to an increase in viable cancer cells.

Highlights

This study showed that miR-506 may function as an oncogenic miRNA in the T- ALL cell line. In conclusion, overexpression of miR-506 leads to an increase in viable cancer cells.

Keywords

Main Subjects

  1. Pui C-H. Acute lymphoblastic leukemia: Springer; 2011. [DOI:10.1007/978-3-642-16483-5_57]
  2. Shi C, Zhang X, Li X, Zhang L, Li L, Sun Z, et al. Effects of microRNA-21 on the biological functions of T-cell acute lymphoblastic lymphoma/leukemia. Oncology letters. 2016;12(5):4173-80. [DOI:10.3892/ol.2016.5163] [PMID] [PMCID]
  3. Passaro D, Quang CT, Ghysdael J. Microenvironmental cues for T‐cell acute lymphoblastic leukemia development. Immunological reviews. 2016;271(1):156-72. [DOI:10.1111/imr.12402] [PMID]
  4. Xu Y, Yang J, Li X. MicroRNA-25 promotes T-cell acute lymphoblastic leukemia cell proliferation and invasion by directly targeting EphA8. Int J Clin Exp Pathol. 2016;9(5):5292-8.
  5. Ram Kumar R, Boro A, Fuchs B. Involvement and clinical aspects of microRNA in osteosarcoma. International journal of molecular sciences. 2016;17(6):877. [DOI:10.3390/ijms17060877] [PMID] [PMCID]
  6. Alizadeh S, Kaviani S, Soleimani M, Abroun S, Kashani-Khatib Z, Asgharzadeh A, et al. Mir-55 inhibition can reduce cell proliferation and induce apoptosis in Jurkat (Acute T cell Leukemia) cell line. Iranian journal of pediatric hematology and oncology. 2014;4(4):141.
  7. Huang J, Zhao L, Xing L, Chen D. MicroRNA‐204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem cells. 2010;28(2):357-64. [DOI:10.1002/stem.288] [PMID] [PMCID]
  8. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nature reviews cancer. 2015;15(6):321. [DOI:10.1038/nrc3932] [PMID] [PMCID]
  9. Obeidi N, Pourfathollah AA, Soleimani M, Zarif MN, Kouhkan F. The Effect of mir-451 upregulation on erythroid lineage differentiation of murine embryonic stem cells. Cell Journal (Yakhteh). 2016;18(2):165.
  10. Lv M, Zhang X, Jia H, Li D, Zhang B, Zhang H, et al. An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-α and cAMP/PKA pathways. Leukemia. 2012;26(4):769-77. [DOI:10.1038/leu.2011.273] [PMID]
  11. Abdi J, Rastgoo N, Li L, Chen W, Chang H. Role of tumor suppressor p53 and micro-RNA interplay in multiple myeloma pathogenesis. Journal of hematology & oncology. 2017;10(1):169. [DOI:10.1186/s13045-017-0538-4] [PMID] [PMCID]
  12. Khamisipour G, Mansourabadi E, Naeimi B, Moazzeni A, Tahmasebi R, Hasanpour M, et al. Knockdown of microRNA‑29a regulates the expression of apoptosis‑related genes in MCF‑7 breast carcinoma cells. Molecular and clinical oncology. 2018;8(2):362-9. [DOI:10.3892/mco.2017.1528] [PMID] [PMCID]
  13. Kumar M, Lu Z, Takwi AAL, Chen W, Callander NS, Ramos KS, et al. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene. 2011;30(7):843-53. [DOI:10.1038/onc.2010.457] [PMID] [PMCID]
  14. Ye F. MicroRNA expression and activity in T-cell acute lymphoblastic leukemia. Oncotarget. 2018;9(4):5445. [DOI:10.18632/oncotarget.23539] [PMID] [PMCID]
  15. Sayadi M, Ajdary S, Nadali F, Rostami S, Fahtabad ME. Tumor suppressive function of microRNA-192 in acute lymphoblastic leukemia. Bosnian journal of basic medical sciences. 2017;17(3):248. [DOI:10.17305/bjbms.2017.1921] [PMID] [PMCID]
  16. Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T, et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nature genetics. 2011;43(7):673. [DOI:10.1038/ng.858] [PMID] [PMCID]
  17. Correia NC, Melão A, Póvoa V, Sarmento L, de Cedrón MG, Malumbres M, et al. microRNAs regulate TAL1 expression in T-cell acute lymphoblastic leukemia. Oncotarget. 2016;7(7):8268. [DOI:10.18632/oncotarget.6987] [PMID] [PMCID]
  18. Wen S, Lin Y, Yu Y, Cao S, Zhang R, Yang X, et al. miR-506 acts as a tumor suppressor by directly targeting the hedgehog pathway transcription factor Gli3 in human cervical cancer. Oncogene. 2015;34(6):717. [DOI:10.1038/onc.2014.9] [PMID]
  19. Luo Y, Sun R, Zhang J, Sun T, Liu X, Yang B. miR-506 inhibits the proliferation and invasion by targeting IGF2BP1 in glioblastoma. American journal of translational research. 2015;7(10):2007.
  20. Peng T, Zhou L, Zuo L, Luan Y. miR-506 functions as a tumor suppressor in glioma by targeting STAT3. Oncology reports. 2016;35(2):1057-64. [DOI:10.3892/or.2015.4406] [PMID]
  21. Zhang Y, Lin C, Liao G, Liu S, Ding J, Tang F, et al. MicroRNA-506 suppresses tumor proliferation and metastasis in colon cancer by directly targeting the oncogene EZH2. Oncotarget. 2015;6(32):32586. [DOI:10.18632/oncotarget.5309] [PMID] [PMCID]
  22. Li J, Wu H, Li W, Yin L, Guo S, Xu X, et al. Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-κB signaling. Oncogene. 2016;35(42):5501. [DOI:10.1038/onc.2016.90] [PMID] [PMCID]
  23. Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Cancer cell culture: Springer; 2011. p. 237-45. [DOI:10.1007/978-1-61779-080-5_20] [PMID]
  24. Dong L, Qu C-K. Flow Cytometric Analysis of Signaling and Apoptosis in Hematopoietic Stem Cells. Hematopoietic Stem Cell Protocols: Springer; 2014. p. 79-87. [DOI:10.1007/978-1-4939-1133-2_6] [PMID]
  25. Yılmaz M, Ozic C, Gok İ. Principles of nucleic acid separation by agarose gel electrophoresis. Gel Electrophoresis-Principles and Basics. 2012;33. [DOI:10.5772/38654]
  26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001;25(4):402-8. [DOI:10.1006/meth.2001.1262] [PMID]
  27. Banales JM, Sáez E, Úriz M, Sarvide S, Urribarri AD, Splinter P, et al. Up‐regulation of microRNA 506 leads to decreased Cl−/HCO3− anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology. 2012;56(2):687-97. [DOI:10.1002/hep.25691] [PMID] [PMCID]
  28. Streicher K, Zhu W, Lehmann KP, Georgantas R, Morehouse C, Brohawn P, et al. A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene. 2012;31(12):1558-70. [DOI:10.1038/onc.2011.345] [PMID]
  29. Ananthanarayanan M, Banales JM, Guerra MT, Spirli C, Munoz-Garrido P, Mitchell-Richards K, et al. Post-translational regulation of the type III inositol 1, 4, 5-trisphosphate receptor by miRNA-506. Journal of Biological Chemistry. 2015;290(1):184-96. [DOI:10.1074/jbc.M114.587030] [PMID] [PMCID]
  30. Sun G, Liu Y, Wang K, Xu Z. miR-506 regulates breast cancer cell metastasis by targeting IQGAP1. International journal of oncology. 2015;47(5):1963-70. [DOI:10.3892/ijo.2015.3161] [PMID]
  31. Liu G, Sun Y, Ji P, Li X, Cogdell D, Yang D, et al. MiR‐506 suppresses proliferation and induces senescence by directly targeting the CDK4/6-FOXM1 axis in ovarian cancer. The Journal of pathology. 2014;233(3):308-18. [DOI:10.1002/path.4348] [PMID] [PMCID]
  32. Li J, Ju J, Ni B, Wang H. The emerging role of miR-506 in cancer. Oncotarget. 2016;7(38):62778. [DOI:10.18632/oncotarget.11294] [PMID] [PMCID]
  33. Song Z, Wang H, Zong F, Zhu C, Tao Y. MicroRNA‑506 regulates apoptosis in retinoblastoma cells by targeting sirtuin 1. Cancer Management and Research. 2019;11:8419. [DOI:10.2147/CMAR.S211122] [PMID] [PMCID]
  34. Yin M, Ren X, Zhang X, Luo Y, Wang G, Huang K, et al. Selective killing of lung cancer cells by miRNA-506 molecule through inhibiting NF-κB p65 to evoke reactive oxygen species generation and p53 activation. Oncogene. 2015;34(6):691-703. [DOI:10.1038/onc.2013.597] [PMID]
  35. Takwi A, Li Y. The p53 pathway encounters the microRNA world. Current genomics. 2009;10(3):194-7. [DOI:10.2174/138920209788185270] [PMID] [PMCID]
  36. Kim EM, Jung C-H, Kim J, Hwang S-G, Park JK, Um H-D. The p53/p21 complex regulates cancer cell invasion and apoptosis by targeting Bcl-2 family proteins. Cancer research. 2017;77(11):3092-100. [DOI:10.1158/0008-5472.CAN-16-2098] [PMID]
  37. Lv H, Shen Y, Wang W. Overexpression of microRNA-149 inhibits chondrocyte apoptosis by regulating expression of Bcl-2, Bax, and p53. Int J Clin Exp Pathol. 2016;9(2):2670-6.
  38. Ye Z, Fang J, Dai S, Wang Y, Fu Z, Feng W, et al. MicroRNA-34a induces a senescence-like change via the down-regulation of SIRT1 and up-regulation of p53 protein in human esophageal squamous cancer cells with a wild-type p53 gene background. Cancer letters. 2016;370(2):216-21. [DOI:10.1016/j.canlet.2015.10.023] [PMID]