Document Type: Original Research

Authors

1 Department of Microbiology, Islamic Azad University of Varamin-Pishva Branch, Tehran, Iran

2 Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

3 Research and Development Department, Farname Inc., Thornhill, Canada

4 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

5 CNC, Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal

6 Department of Microbiology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch Islamic Azad University, Tehran, Iran (IAUPS)

Abstract

Background & Objective: EnterococcusSpecies are the common cause of nosocomial infections, which are highly resistant to different antibiotics. Therefore, determination of their antibiotic susceptibility patterns and simultaneous resistance to antibiotics is important for better treatment strategies.
Methods: 400 clinical Enterococcus isolates were collected from different hospitals in Tehran, Iran. Standard phenotypic-biochemical tests and PCR were used to identify the Enterococcus species. The antimicrobial susceptibility patterns and simultaneous resistance to selected antibiotics were determined by disk diffusion method according to the CLSI guidelines. All data analysis was performed using Python packages Scipy and Stats models.
Results: According to the biochemical and PCR analyses, among 400 Enterococcus species, 72% of samples were Enterococcus faecalis, 10.75% Enterococcus faecium, and 17.25% other Enterococcus species. The results determined antimicrobial resistances of these strains against gentamicin, vancomycin, fosfomycin trometamol, teicoplanin, and quinupristin/dalfopristin. Results confirmed a significant correlation between resistance to vancomycin and resistance to teicoplanin. This correlation remains significant when including only E. faecium or E. faecalis species. We also found a negative correlation between resistance to teicoplanin and quinupristin/dalfopristin. Additionally, Quinupristin/dalfopristin was the least effective antibiotic while vancomycin and teicoplanin were the most effective ones.
Conclusion: Based on the results and association between simultaneous resistance to some antibiotics such as vancomycin and teicoplanin, in the case of antibiotic resistance, the choice of a second antibiotic can be very important which can lead to good or bad effects.

Keywords

Main Subjects

  1. Moghimbeigi A, Moghimbeygi M, Dousti M, Kiani F, Sayehmiri F, Sadeghifard N, et al. Prevalence of vancomycin resistance among isolates of enterococci in Iran: a systematic review and meta-analysis. Adolescent health, medicine and therapeutics. 2018;9:177. [DOI:10.2147/AHMT.S180489] [PMID] [PMCID]
  2. Founou RC, Founou LL, Essack SY. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PloS one. 2017;12(12):e0189621. [DOI:10.1371/journal.pone.0189621] [PMID] [PMCID]
  3. Arshadi M, Mahmoudi M, Motahar MS, Soltani S, Pourmand MR. Virulence Determinants and Antimicrobial Resistance Patterns of Vancomycin-resistant Enterococcus faecium Isolated from Different Sources in Southwest Iran. Iranian journal of public health. 2018;47(2):264.
  4. Azizi R, Alemrajabi M, Naderan M, Shoar S. Efficacy of modified Limberg flap in surgical treatment of infected pilonidal abscess: a case-control study. European Surgery. 2014;46(4):144-7. [DOI:10.1007/s10353-014-0273-9]
  5. Bartash R, Nori P. Beta-lactam combination therapy for the treatment of Staphylococcus aureus and Enterococcus species bacteremia: A summary and appraisal of the evidence. International Journal of Infectious Diseases. 2017;63:7-12. [DOI:10.1016/j.ijid.2017.07.019] [PMID]
  6. Amani J, A Barjini K, M Moghaddam M, Asadi A. In vitro synergistic effect of the CM11 antimicrobial peptide in combination with common antibiotics against clinical isolates of six species of multidrug-resistant pathogenic bacteria. Protein and peptide letters. 2015;22(10):940-51. [DOI:10.2174/0929866522666150728115439] [PMID]
  7. Choopani A, Golmohmmadi R, Rafati H, Imani Fooladi A. Prevalence of Staphylococcus aureus strains isolated from wound infection and drug sensitivity pattern, Tehran-Iran (2006-07). J Gorgan Univ Med Sci. 2012;14(3):135-40.
  8. Tan SC, Chong CW, Teh CSJ, Ooi PT, Thong KL. Occurrence of virulent multidrug-resistant Enterococcus faecalis and Enterococcus faecium in the pigs, farmers and farm environments in Malaysia. PeerJ. 2018;6:e5353. [DOI:10.7717/peerj.5353] [PMID] [PMCID]
  9. Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial Infections in Combined Medical-Surgical Intensive Care Units in the United States. Infection Control & Hospital Epidemiology. 2000;21(8):510-5. [DOI:10.1086/501795] [PMID]
  10. Custovic A, Smajlovic J, Hadzic S, Ahmetagic S, Tihic N, Hadzagic H. Epidemiological Surveillance of Bacterial Nosocomial Infections in the Surgical Intensive Care Unit. Materia Socio-Medica. 2014;26(1):7-11. [DOI:10.5455/msm.2014.26.7-11] [PMID] [PMCID]
  11. Van den Berghe E, De Winter T, De Vuyst L. Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion. International Journal of Food Microbiology. 2006;107(2):159-70. [DOI:10.1016/j.ijfoodmicro.2005.08.027] [PMID]
  12. Schröder U-C, Beleites C, Assmann C, Glaser U, Hübner U, Pfister W, et al. Detection of vancomycin resistances in enterococci within 3 ½ hours. Scientific reports. 2015;5:8217. [DOI:10.1038/srep08217] [PMID] [PMCID]
  13. Moradi M, Ghosian MH, Yaghout poor E. Assessment of Hyoscyamus niger seeds alcoholic extract effects on acute and chronic pain in male NMRI rats. Journal of Basic and Clinical Pathophysiology. 2012;1(1):29-36.
  14. Kristich CJ, Rice LB, Arias CA. Enterococcal infection-treatment and antibiotic resistance. 2014.
  15. Chakraborty A, Pal N, Sarkar S, Gupta M. Antibiotic resistance pattern of Enterococci isolates from nosocomial infections in a tertiary care hospital in Eastern India. Journal of Natural Science, Biology and Medicine. 2015;6(2):394-7. [DOI:10.4103/0976-9668.160018] [PMID] [PMCID]
  16. Agudelo Higuita NI, Huycke MM. Enterococcal Disease, Epidemiology, and Implications for Treatment. In: Gilmore MS, Clewell DB, Ike Y, Shankar N, editors. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Boston: Massachusetts Eye and Ear Infirmary; 2014.
  17. Rivera AM, Boucher HW. Current Concepts in Antimicrobial Therapy Against Select Gram-Positive Organisms: Methicillin-Resistant Staphylococcus aureus, Penicillin-Resistant Pneumococci, and Vancomycin-Resistant Enterococci. Mayo Clinic Proceedings. 2011;86(12):1230-43. [DOI:10.4065/mcp.2011.0514] [PMID] [PMCID]
  18. Beganovic M, Luther MK, Rice LB, Arias CA, Rybak MJ, LaPlante KL. A Review of Combination Antimicrobial Therapy for Enterococcus Faecalis Bloodstream Infections and Infective Endocarditis. Clinical Infectious Diseases. 2018. [DOI:10.1093/cid/ciy064] [PMID] [PMCID]
  19. Azizi R, Alvandipour M, Bijari A, Shoar S, Alemrajabi M. Clinical outcome after stapled transanal rectal resection for obstructed defecation syndrome: the first Iranian experience. European Surgery. 2013;45(1):21-5. [DOI:10.1007/s10353-013-0189-9]
  20. Devriese L, Van de Kerckhove A, Kilpper-Bälz R, Schleifer K. Characterization and identification of Enterococcus species isolated from the intestines of animals. International Journal of Systematic and Evolutionary Microbiology. 1987;37(3):257-9. [DOI:10.1099/00207713-37-3-257]
  21. Honarm H, Falah Ghavidel M, Nikokar I, Rahbar Taromsari M. Evaluation of a PCR Assay to Detect Enterococcus faecalis in Blood and Determine Glycopeptides Resistance Genes: Van A and Van B. Iranian Journal of Medical Sciences. 2012;37(3):194-9.
  22. Tsai J-C, Hsueh P-R, Lin H-M, Chang H-J, Ho S-W, Teng L-J. Identification of Clinically Relevant Enterococcus Species by Direct Sequencing of groES and Spacer Region. Journal of Clinical Microbiology. 2005;43(1):235-41. [DOI:10.1128/JCM.43.1.235-241.2005] [PMID] [PMCID]
  23. Jackson CR, Fedorka-Cray PJ, Barrett JB. Use of a Genus- and Species-Specific Multiplex PCR for Identification of Enterococci. Journal of Clinical Microbiology. 2004;42(8):3558-65. [DOI:10.1128/JCM.42.8.3558-3565.2004] [PMID] [PMCID]
  24. (CLSI) CaLSI. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing Wayne, PA: Clin Labora Stand Institu; 2015 [
  25. Mirnejad R, Sajjadi N, Masoumi Zavaryani S, Piranfar V, Hajihosseini M, Roshanfekr M. Identification of aminoglycoside resistance genes by Triplex PCR in Enterococcus spp. isolated from ICUs. Infez Med. 2016;24(3):222-9.
  26. Moghaddam MM, Barjini KA, Ramandi MF, Amani J. Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant Klebsiella pneumoniae and Salmonella typhimurium strains and its cytotoxicity on eukaryotic cells. World Journal of Microbiology and Biotechnology. 2014;30(5):1533-40. [DOI:10.1007/s11274-013-1575-y] [PMID]
  27. Naserpour Farivar T, Najafipour R, Johari P, Aslanimehr M, Peymani A, Jahani Hashemi H, et al. Development and evaluation of a Quadruplex Taq Man real-time PCR assay for simultaneous detection of clinical isolates of Enterococcus faecalis, Enterococcus faecium and their vanA and vanB genotypes. Iranian Journal of Microbiology. 2014;6(5):335-40.
  28. Traub WH, Geipel U, Leonhard B. Antibiotic Susceptibility Testing (Agar Disk Diffusion and Agar Dilution) of Clinical Isolates of Enterococcus faecalis and E. faecium: Comparison of Mueller-Hinton, Iso-Sensitest, and Wilkins-Chalgren Agar Media. Chemotherapy. 1998;44(4):217-29. [DOI:10.1159/000007118] [PMID]
  29. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):289-300. [DOI:10.1111/j.2517-6161.1995.tb02031.x]
  30. Azad ZM, Moravej H, Fasihi-Ramandi M, Masjedian F, Nazari R, Mirnejad R, et al. In vitro synergistic effects of a short cationic peptide and clinically used antibiotics against drug-resistant isolates of Brucella melitensis. Journal of medical microbiology. 2017;66(7):919-26. [DOI:10.1099/jmm.0.000524] [PMID]
  31. Moravej H, Moravej Z, Yazdanparast M, Heiat M, Mirhosseini A, Moosazadeh Moghaddam M, et al. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microbial Drug Resistance. 2018;24(6):747-67. [DOI:10.1089/mdr.2017.0392] [PMID]
  32. Haj Ebrahim Tehrani F, Moradi M, Ghorbani N. Bacterial Etiology and Antibiotic Resistance Patterns in Neonatal Sepsis in Tehran during 2006-2014. Iranian Journal of Pathology. 2017;12(4):356-61.
  33. Furuno JP, Perencevich EN, Johnson JA, Wright M-O, McGregor JC, Morris Jr JG, et al. Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci co-colonization. Emerging infectious diseases. 2005;11(10):1539. [DOI:10.3201/eid1110.050508] [PMID] [PMCID]
  34. Heintz BH, Halilovic J, Christensen CL. Vancomycin-Resistant Enterococcal Urinary Tract Infections. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2010;30(11):1136-49. [DOI:10.1592/phco.30.11.1136] [PMID]
  35. Shokoohizadeh L, Ekrami A, Labibzadeh M, Ali L, Alavi SM. Antimicrobial resistance patterns and virulence factors of enterococci isolates in hospitalized burn patients. BMC research notes. 2018;11(1):1. [DOI:10.1186/s13104-017-3088-5] [PMID] [PMCID]
  36. Tripathi A, Shukla S, Singh A, Prasad K. Prevalence, outcome and risk factor associated with vancomycin-resistant Enterococcus faecalis and Enterococcus faecium at a Tertiary Care Hospital in Northern India. Indian journal of medical microbiology. 2016;34(1):38. [DOI:10.4103/0255-0857.174099] [PMID]
  37. Hosseini MJ, Sadripour R. Antibiotic Resistance pattern of bacteria isolated from nosocomial infection in internal surgery and neurosurgery intensive care unit (NICU) at a tertiary care hospital in Tehran, Iran. Biosciences Biotechnology Research Asia. 2017;14(3):1095-102. [DOI:10.13005/bbra/2547]
  38. Heiat M, Aghamollaei H, Moghaddam MM, Kooshki H. Using CM11 peptide as a cell permeable agent for the improvement of conventional plasmid transformation methods in Escherichia coli and Bacillus subtilis. Minerva Biotecnol. 2014;26:149-57.
  39. Bourdon N, Fines-Guyon M, Thiolet J-M, Maugat S, Coignard B, Leclercq R, et al. Changing trends in vancomycin-resistant enterococci in French hospitals, 2001-08. Journal of antimicrobial chemotherapy. 2011;66(4):713-21. [DOI:10.1093/jac/dkq524] [PMID]
  40. Akpaka PE, Kissoon S, Jayaratne P, Wilson C, Golding GR, Nicholson AM, et al. Genetic characteristics and molecular epidemiology of vancomycin-resistant Enterococci isolates from Caribbean countries. PloS one. 2017;12(10):e0185920. [DOI:10.1371/journal.pone.0185920] [PMID] [PMCID]
  41. Hassan MM, Belal E-SB. Antibiotic resistance and virulence genes in enterococcus strains isolated from different hospitals in Saudi Arabia. Biotechnology & Biotechnological Equipment. 2016;30(4):726-32. [DOI:10.1080/13102818.2016.1184992]
  42. Murray BE. Vancomycin-Resistant Enterococcal Infections. New England Journal of Medicine. 2000;342(10):710-21. [DOI:10.1056/NEJM200003093421007] [PMID]
  43. Lavová M, Bezekova J, Čanigová M, Krocko M, Domig K. Species identification of enterococci by biochemical test and molecular-genetic methods2014. 124-9 p. [DOI:10.5219/364]
  44. Yim J, Smith JR, Rybak MJ. Role of Combination Antimicrobial Therapy for Vancomycin‐Resistant Enterococcus faecium Infections: Review of the Current Evidence. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2017;37(5):579-92. [DOI:10.1002/phar.1922] [PMID]
  45. Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert review of anti-infective therapy. 2014;12(10):1221-36. [DOI:10.1586/14787210.2014.956092] [PMID] [PMCID]
  46. Yuen GJ, Ausubel FM. Enterococcus Infection Biology: Lessons from Invertebrate Host Models. Journal of microbiology (Seoul, Korea). 2014;52(3):200-10. [DOI:10.1007/s12275-014-4011-6] [PMID] [PMCID]
  47. Nagel JL, Washer L, Kunapuli A, Heidmann J, Pisani J, Gandhi T. Clinical efficacy of fosfomycin for the treatment of complicated lower tract and uncomplicated urinary tract infections. International Archives of Medicine. 2015;8. [DOI:10.3823/1750]
  48. Adhikari L. High-level aminoglycoside resistance and reduced susceptibility to vancomycin in nosocomial enterococci. Journal of global infectious diseases. 2010;2(3):231. [DOI:10.4103/0974-777X.68534] [PMID] [PMCID]
  49. Mittal S, Singla P, Deep A, Bala K, Sikka R, Garg M, et al. Vancomycin and high level aminoglycoside resistance in Enterococcus spp. in a tertiary health care centre: a therapeutic concern. Journal of pathogens. 2016;2016. [DOI:10.1155/2016/8262561] [PMID] [PMCID]
  50. Ngbede EO, Raji MA, Kwanashie CN, Kwaga JK, Adikwu AA, Maurice NA, et al. Characterization of high level ampicillin-and aminoglycoside-resistant enterococci isolated from non-hospital sources. Journal of medical microbiology. 2017;66(7):1027-32. [DOI:10.1099/jmm.0.000518] [PMID]
  51. Shahraki S, Mousavi MRN. Determination of Virulence Factors in Clinical Multidrug Resistance Enterococci Isolates at Southeast of Iran. Jundishapur Journal of Microbiology. 2017;10(5). [DOI:10.5812/jjm.45514]
  52. Arbabi L, Boustanshenas M, Rahbar M, Owlia P, Adabi M, Koohi SR, et al. Antibiotic susceptibility pattern and virulence genes in Enterococcus spp. isolated from clinical samples of Milad hospital of Tehran, Iran. Archives of Clinical Infectious Diseases. 2016;11(3). [DOI:10.5812/archcid.36260]
  53. Azza L, Ahmed M, Nahed AR, Wafaa Z, Eman E. Molecular and phenotypic characterization of hospital-associated and community-associated isolates of Enterococcus spp. Menoufia Medical Journal. 2013;26(2):108-13. [DOI:10.4103/1110-2098.126138]
  54. Al-Hadithi HT, Rasheed K. Infected Wounds. Incidence of High-level Resistance to Vancomycin and Aminoglycosides.
  55. Binda E, Marinelli F, Marcone LG. Old and New Glycopeptide Antibiotics: Action and Resistance. Antibiotics. 2014;3(4). [DOI:10.3390/antibiotics3040572] [PMID] [PMCID]
  56. Dutka-Malen S, Evers S, Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. Journal of Clinical Microbiology. 1995;33(1):24-7. [DOI:10.1128/JCM.33.1.24-27.1995] [PMID] [PMCID]