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Background & Objective: Papillary thyroid cancer (PTC) is considered to be the most 

common type of thyroid malignancies. Epigenetic alteration, in which the chromatin 

conformation and gene expression change without changing the sequence of DNA, can 

occur in some tumor suppressor genes and oncogenes. Methylation is the most common 

type of epigenetic alterations that can be an excellent indicator of PTC invasive behavior. 

Methods: In this research, we determined the promoter methylation status of four tumor 

suppressor genes (SLC5A8, RASSF1, MGMT, and DNMT1) and compared the results of 

55 PTC cases with 40 goiter patients. For methylation, we used the methylation-sensitive 

high resolution melting (MS-HRM) assay technique. The resulting graphs of each run 

were compared with those of 0%, 50%, and 100% methylated controls. 

Results: Our data showed that the promoter methylation of SLC5A8, Ras association 

domain family member 1(RASSF1), and MGMT were significantly different between 

PTC tissue and goiter with P-value less than 0.05. The most significant differences were 

observed in RASSF1; 77.2% of hyper-methylated PTC patients versus 15.6% hyper-

methylated goiter samples (P<0.001).  

Conclusion: RASSF1 promoter methylation can be a PTC genetic marker. RASSF1 

promoter methylation is under the impact of the methyltransferase genes (DNMT1 and 

MGMT), protein expression, and promoter methylation. 
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Introduction 
Endocrine tumors include thyroid, adrenal, pancreas, 

parathyroid, and pituitary glands (1). Thyroid cancers are 

classified into four main types: papillary thyroid cancer 

(PTC), follicular thyroid cancer (FTC), medullary thyroid 

cancer (MTC), and anaplastic thyroid cancer (ATC) (2, 3). 

PTC is the most common form of well-differentiated 

thyroid cancer (1.0%–1.5% new cases per year) with 

growing incidence over the last three decades all over the 

world (4-8). PTC is typically an asymptomatic disease and 

it is identified through the mass in the anterior neck of 

patients usually when they are in their thirties and forties (9-

11). PTC cells can occasionally migrate to the adjacent 

lymph nodes and rarely to distant organs; thus, adjacent and 

distant metastasis to the lungs and bones can be seen in 

metastatic form of PTC (12, 13). Nowadays, fine needle 

aspiration (FNA) is a common test for evaluating thyroid 

nodules, but it can be reported as the uncertain in some rare 

cases (14, 15). Accordingly, finding some genetic 

biomarkers for classifying malignant and benign cases 

before metastasis could be an essential measurement for 

both thyroid cancer patients and clinicians (16-19). In 

thyroid malignancies, the most important genetic and 

epigenetic alterations start their functions through 

activating metabolic pathways like mitogen-associated 

protein kinase (MAPK)/extracellular signal-regulated 

kinase (ERK) (20-22). Genetic and epigenetic changes of 

the genome can result in protein expression alterations like 

EGFRvIII, CD56, P63, CK19, estrogen receptors (ERs), 

and Survivin that are usually checked by immune-

histochemical (IHC) studies (23-26). Histopathology is the 

microscopic study of targeted surgically removed tissue 

and for accurate diagnosis of cancer and other diseases, 

histopathological examination of samples is required (27-

31). IHC is a useful method for determining the exact origin 

of tumor cells and sometimes discrimination between non-

neoplastic disorders (32-35). Common histopathology and 
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clinical features can be used for PTC and other papillary 

cancer types; moreover, some additional genetic and 

epigenetic biomarkers can support them (36). In fact, 

genetic and epigenetic biomarkers can fill the gap of exact 

diagnosis through imaging (ultrasound technology) and 

cytology, as the usual detection methods (37-39). Some 

genetic markers are mutations, polymorphisms, 

amplifications, and translocations, and epigenetic markers 

addition to microRNAs (34, 40). Contrary to genetic 

modifications that alter the sequence of genes constantly, 

the methylation is resulting in the alteration of gene 

expression patterns without changing the DNA sequence in 

a reversible manner (41, 42). Epigenetic silencing through 

aberrant DNA methylation of tumor suppressor genes can 

bring devastating consequences and cause human cancer 

formation (42, 43). Hyper-methylation of several tumor 

suppressor genes (TSHR, ECAD, SLC5A8, DAPK, TIMP3, 

and RARB2) are linked to the aggressive features of PTC 

(27, 44-47). Methylation status is mostly reported as the 

Methylated (M) or Unmethylated (U) so the methylation 

quantity is not available. Unfortunately, the common use of 

non-quantitative methylation detection method cannot 

represent the exact methylation in promoter region of 

reported hyper-methylated loci. Moreover, non-

quantitative methylation detection method is prone to the 

inclusion of false positive results (48). Furthermore, the 

failure to quantify methylation incorrectly assumes 

homogeneity of stages and the significance of all detected 

methylation (49). Thanks to the new approach of promoter 

methylation quantification based on high resolution melting 

(HRM), now it is possible to determine the quantity of 

methylated cytosine in CpG dinucleotide (CpG islands) 

(50-53). Assessment of DNA methylation quantity can be 

a critical factor for the identification, development, and 

application of methylation-based biomarkers in cancer. 

This study aims to identify DNA methylation quantity of 

four tumor suppressor genes using the methylation-

sensitive high resolution melting (MS-HRM) assay 

technique.  

Materials and Methods 
Tissue Samples 

This study was approved by the Research Ethics 

Committee of the Endocrinology and Metabolism 

Research Institute, Tehran University of Medical Sciences 

(IR.TUMS.EMRI.REC.1395.00114). Totally, 95 human 

thyroid tissues were obtained from fresh frozen surgically 

resected thyroid tissues (≥15 mm). In order to reduce 

contamination, all resected tissues were snap frozen in 

liquid nitrogen and independently analyzed. The 

demographic information of the patients and adenoma 

characteristics analyzed in this study are presented in Table 

1. An informed consent was taken from all participants for 

the tissue collection in compliance with our institutional 

guidelines. 

DNA extraction 

Fresh frozen tissue specimens were cut on dry ice from 

fresh frozen surgical material stored at −180°C by using a 

scalpel. Then, DNA was extracted using the DNeasy Blood 

& Tissue Kit (Qiagen, Cat No:69504) according to the 

manufacturer’s protocol. DNA purity and quantity was 

determined using a Thermo Scientific™ NanoDrop™ 

spectrophotometers 2000c spectrophotometer (Thermo 

Fisher Scientific Inc). All the extracted thyroid tissue DNAs 

were stored at - 80°C.  

 

Table 1. Demographics of PTC patients (cases) and goiter patients (control) 

Variables Case (n= 55) Controls (n=40) P-value 

Age (years) 42.28 (±14.32) 43.16 (±9..31) 0.624 

Gender    

Female 38 (70.90%) 31 (77.50%)  

Male 17 (30.90%) 9 (22.5%) 0.306 

Weight 70.51 (±12.19) 73.60 (±10.91) 0.204 

Height 164.96 (±7.96) 167.32 (±9.55) 0.370 

BMI 28.85 (±4.09) 31.26 (±0.79) 0.093 

SBP 121.91 (±16.01) 118.77 (±11.10) 0.963 

DBP 76.58 (±11.79) 70.05 (±9.79) 0.491 

BMI: Body Mass Index, SBP: Systolic Blood Pressure, DBP: Diastolic Blood Pressure. 

There was no statistically significant difference between the two groups of PTC patients (cases) and goiter patients (control) in basic characteristics. 

 

Bisulfite Modification and Quantitative Methylation 

Detection 

Bisulfite conversion altered the DNA sequence 

depending on the methylation status of individual 

unmethylated Cytosines (C) conversion to uracil in 

genomic DNA; these changes can be detected via HRM 

analysis (54). Then, 150-200 ng of DNA from each sample 

was treated with sodium bisulfite conversion kit by the 

“EpiTect® Bisulfite Kit” (Qiagen, Cat No:  59104) 

according to the manufacturer's protocol. The melting 

profiles of bisulfite-modified PCR products can be used to 

indicate methylation status, when samples are unknown. 

These processes were run by bisulfiting pre-treatment and 

unbiased PCR amplification of both methylated and 

unmethylated templates of the targeted region. Therefore, 

for the MS-HRM of SLC5A8, RASSF1, MGMT 

and DNMT1 genes promoter region amplification we used 

gene specific primers. The MS-HRM analyses were run 
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based on three main stages: holding stage, cycling stage, 

and melt curve stage. 

Statistical Analysis  

Samples were considered as hyper-methylated and 

hypo-methylated when the measured methylation point 

was more than the 12% mean methylation level and less 

than the 12% mean methylation level, respectively. 

Correlations between the methylation levels and 

demographic and histopathological characteristics in the 

two groups were analyzed using DNA methylation. All 

analyses were done by SPSS®, version 16.0, license (SPSS 

Inc., Chicago, IL. USA), and P-value<0.05 was considered 

as statistically significant. 

Results 
We examined the 12-loci promoter methylation of fresh 

frozen tissue (55 PTC cases vs. 40 goiter controls) for four 

tumor suppressor genes. The age of all samples ranged 

from 18 to 86 years. For each run of MS-HRM, five wells 

were allocated to control samples (0%, 50%, and 100%). 

Numerous replicates of the diluted samples were amplified 

by PCR. Then melting profile of each reaction was used to 

define its methylation status. The hyper/hypo-methylations 

in each sample could be freely estimated by comparing 

them to the control peaks (Figure 1). 

 

 

 

 

Fig. 1. The graph of targeted promoter region of RASSF1 in comparison with 50% controls. Part A indicates 

hypo-methylation (yellow line) and Part B indicates hyper-methylation (red line). 

 
Quantification of each locus of the four targeted 

genes is presented in Table 3. In addition, each locus 

methylation quantification and  the overall methylation 

status of each gene was earned through two regions of 

RASSF1, three regions of SLC5A8, three regions of 

DNMT1, and four regions of MGMT (Table 2). 

The cut-off value of methylation was defined 

according to several references (U if it was ≤12% and M 

if it was ≥12%) (55-57). 

All candidate tumor suppressor gene promoter 

hyper-methylation was significantly different in two 

groups of PTC cases and controls except DNMT1. Thus, 

for sensitivity analysis adjusting for demographic 

variables and risk factors we have done several logistic 

regression models for potentially confounding variables 

Table 3). Two DNA methyltransferases of MGMT and 

DNMT1 also adjusted in model III and IV in order to 

check their impact on the methylation pattern. 

In model III (MGMT adjusted model) the odds ratio 

of RASSF1 and SLC5A8 promoter hyper-methylation 

and risk of PTC increased in comparison with model I 

(crude model). However, in model IV (DNMT1 adjusted 

model), the RASSF1 and SLC5A8 promoter hyper-

methylation and risk of PTC decreased a little in 

comparison with model I (crude model). 
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Table 2. The difference of methylation quantification of 12-promoter loci of four targeted tumor suppressor genes 

Promoter 

Region 
Methylation* 

PTC Cases 

Number (percent) 

Goiter Cases 

Number (percent) 
P-value 

 

SLC5A8 

U 16(29.09%) 34(85.0%) 
0.002 

M 39 (70.9%) 8 (20.0%) 

 

RASSF1 

U 11(20.8%) 38 (95.0%) 
<0.001** 

M 44(80.0%) 2 (5.0%) 

 

MGMT 

U 7 (14.0%) 29 (72.5%) 
0.001 

M 49 (12.72%) 11 (27.5%) 

DNMT1 
U 25 (45.45%) 30 (75%) 

0.018 
M 30 (54.54%) 10 (25%) 

*Methylation is categorized from 1 to 5 according to methylation quantification results. 
1=0 percent methylated; 2=25 percent methylated; 3=50 percent methylated; 4=75 percent methylated; and 5=100 percent methylated. 

The mean methylation of several loci of one gene was calculated and categorized as U if it was ≤12% and M if it was ≥12%** The most 

significant P-value was reported for RASSF1 gene. 
 

Table 3.  The association of methylation in four tumor suppressor genes SLC5A8, RASSF1, MGMT, and DNMT1 

Model SLC5A8 RASSF1 

Model I 8.24   (3.34 - 20.32) 18.37   (6.65 - 50.76) 

Model II 8.72   (3.36 - 22.67) 16.29   (5.72 - 46.34) 

Model III 9.94   (2.87 - 34.45) 19.02   (4.97 - 75.52) 

Model IV 8.85   (3.23 - 24.24) 16.52   (5.62 - 48.6) 

Model I is crude model, Model II is age and sex adjusted model, Model III is age, sex, and MGMT methylation status adjusted, and Model IV 
is age, sex, DNMT1 methylation status adjusted. 

 

 
Fig. 2. Promoter quantification differences of SLC5A8, RASSF1, MGMT and DNMT1 methylation in PTC cases and controls. 

Discussion 
The role of aberrant methylation of tumor 

suppressor genes more than functionally chief 

regulatory genes is a frequent event in certain human 

tumors and developmental abnormalities (58, 59). In 

eukaryotic cells there are special DNA 

methyltransferase enzymes which put or remove the 

methyl group on/off the cytosine base of CpG islands 

and regulate the conformation change between 

methylated and unmethylated forms (60, 61). DNMT1 

is the most abundant DNA methyltransferase in 

mammalian cells and extra active on hemi-methylated 

DNA as compared with unmethylated substrate in 

vitro, but it is still more active at de novo methylation 

than other DNMTs (62-64). Several studies have shown 
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that changing the DNA methylation patterns in the 

regulatory promoter regions of DNMT1 play an 

important role in the development of genetic disorders 

(65-68). DNMT1 promoter methylation was present in 

primary and recurrent gliomas (69). The DNMT1 

expression can be regulated through its promoter 

methylation patterns in the core promoter region of 

DNMT1 in several human neoplastic tissues (70, 71). 

The different methylation status of DNMT1 (b) in our 

study can be attributed to this region as the core 

promoter region that can have a role in PTC. It can also 

be supported by the idea that epigenetic regulation of 

the methylation status of DNMT genes can regulate 

epigenetic profile of extra embryonic tissue in humans 

(72). It has been shown that some medication targeting 

DNMT1 can inhibit migration and invasion of thyroid 

cancer cells through down-regulating DNMT1 (73). In 

contrast, some results indicated that DNMT1 was 

neither overexpressed in PTC nor correlated with 

tumor stage and capsular/vascular or lymphatic 

invasion (74). Yi Cai et al. (2017) pointed out to the 

critical threshold levels of DNMT1 as an important 

factor of DNA methylation maintenance across the 

genome in human cancer cells (75). However, our 

results indicated that DNMT1 methylation in PTC 

patients, in comparison with goiter patients (controls), 

was less than SLC5A8, RASSF1, and MGMT.  

O6-methylguanine DNA methyltransferase is a 

protein in humans encoded by the MGMT gene, and it 

is a maintenance methyltransferases that is crucial for 

genome stability (76, 77). In a colorectal cancer study 

it was suggested that MGMT expression reduced after 

hyper-methylation of the MGMT promoter region (78). 

MGMT is suppressed epigenetically and in different 

ways such as promoter region hyper-methylation and 

over-expression of a number of microRNAs (79-84). 

Inactivation of the MGMT through promoter hyper-

methylation is a common event in primary human 

malignancies (71, 85). Esteller et al. described a 

straight line of MGMT aberrant methylation and k-Ras 

and p53 genes mutation in colorectal cancer (85, 86). 

The promoter methylation of two candidate regions of 

MGMT were associated with PTC. In a MGMT 

adjusted model the odds ratio of RASSF1 and SLC5A8 

promoter hyper-methylation and risk of PTC increased 

in comparison with model I (crude model). Supporting 

information is reported by Herfarth et al. that linked the 

specific CpG methylation pattern of 

the MGMT promoter region with decrease of MGMT 

expression in primary colorectal cancers (87). 

Moreover MGMT methylation is reported in a group of 

discriminating methylation markers that 

differentiate thyroid cancer from benign nodules (88). 

Moreover, MGMT methylation was reported in MLH1 

and MGMT expression and their consequence in 

genomic instability in patients with thyroid carcinoma 

(89). 

SLC5A8 can predominantly be found in the small 

intestine, colon, thyroid gland, kidney, and salivary 

glands and to a lesser extent in the retina and brain (90-

93). It was shown that SLC5A8 expression, as a 

sodium/iodide symporter (NIS) member, decreased in 

several malignancies, including thyroid cancers and its 

methylation is shown as the discriminative marker 

between malignant and benign thyroid tumors (88, 94). 

We recently conducted a meta-analysis the results of 

which indicated that SLC5A8 was the most significant 

methylated gene in thyroid cancers (95). CpG island 

methylation of tumor-related promoters including 

RASSF1, MGMT, and SLC5A8 occurs preferentially in 

undifferentiated thyroid carcinoma (96). In contrary, 

the overexpression of SLC5A8 together with IRX1 and 

EBF3 may be involved in the transforming growth 

factor beta signaling pathway, which is often disrupted 

in head and neck squamous cell carcinoma. Silencing 

of the SLC5A8 through its promoter methylation was 

associated with BRAF mutations in classical PTC (97). 

Hyper-methylation of SLC5A8 promoters reported 

preferentially in undifferentiated carcinoma (98).  

The Ras association domain-containing protein 1 

(RASSF1), which is encoded by RAS gene altered 

expression, is associated with the pathogenesis of a 

variety of cancers (99-103). The most frequent 

molecular mechanism for RASSF1 suppression in 

different malignancies is the ishypermethylation of its 

CpG-island promoter region (104-108). Frequent 

epigenetic silencing of the RASSF1A in thyroid 

carcinoma has been highlithed (109) alone or with 

NORE1A methylation and BRAFV600E mutations (110). 

RASSF1 methylation can be used as the therapeutic 

determinant in thyroid malignancies (111). In a meta-

analysis it was reported as the most significant hyper-

methylated region within thyroid carcinomas (112). 

The survival rate and prognosis in head and neck 

squamous cell carcinoma (HNSCC) patients was 

dependent on 11 tumor-related genes, including 

RASSF1 and MGMT. The adjusted model of age, sex, 

and DNMT1 methylation status did not change the link 

of RASSF1 methylation and PTC cancer risk. 

Meanwhile, Bai et al. reported that DNMT1 inhibits 

proliferation, metastasis, and invasion in esophageal 

squamous cell carcinoma by suppressing methylation 

of RASSF1 and DAPK (30, 113). Methylation of 

RASSF1 gene promoter can be regulated by p53 and 

DAXX (114, 115). 

According to the results, RASSF1 and SLC5A8 

promoter methylations can be a PTC diagnostic 

biomarker which are completely dependent on DNMT1 

or MGMT promoter methylation status. 
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