Promoter Methylation of Four Tumor Suppressor Genes in Human Papillary Thyroid Carcinoma

Document Type: Original Research

Authors

1 Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

2 Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

3 Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran

4 Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran

10.30699/ijp.2019.94401.1922

Abstract

Background & Objective: Papillary thyroid cancer (PTC) is considered to be the most common type of thyroid malignancies. Epigenetic alteration, in which the chromatin conformation and gene expression change without changing the sequence of DNA, can occur in some tumor suppressor genes and oncogenes. Methylation is the most common type of epigenetic alterations that can be an excellent indicator of PTC invasive behavior.
Methods: In this research, we determined the promoter methylation status of four tumor suppressor genes (SLC5A8, RASSF1, MGMT, and DNMT1) and compared the results of 55 PTC cases with 40 goiter patients. For methylation, we used the methylation-sensitive high resolution melting (MS-HRM) assay technique. The resulting graphs of each run were compared with those of 0%, 50%, and 100% methylated controls.
Results: Our data showed that the promoter methylation of SLC5A8, Ras association domain family member 1(RASSF1), and MGMT were significantly different between PTC tissue and goiter with P-value less than 0.05. The most significant differences were observed in RASSF1; 77.2% of hyper-methylated PTC patients versus 15.6% hyper-methylated goiter samples (P<0.001).
Conclusion: RASSF1 promoter methylation can be a PTC genetic marker. RASSF1 promoter methylation is under the impact of the methyltransferase genes (DNMT1 and MGMT), protein expression, and promoter methylation.

Keywords

Main Subjects


  1. Goodall C. On para‐endocrine cancer syndromes. International Journal of Cancer. 1969;4(1):1-13. [DOI:10.1002/ijc.2910040102]
  2. Sipos J, Mazzaferri E. Thyroid cancer epidemiology and prognostic variables. Clinical oncology. 2010;22(6):395-404. [DOI:10.1016/j.clon.2010.05.004] [PMID]
  3. Khatami F, Tavangar SM. Genetic and Epigenetic of Medullary Thyroid Cancer. Iranian biomedical journal. 2017:0-.
  4. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. Journal of cancer epidemiology. 2013;2013. [DOI:10.1155/2013/965212] [PMID] [PMCID]
  5. Aschebrook-Kilfoy B, Ward MH, Sabra MM, Devesa SS. Thyroid cancer incidence patterns in the United States by histologic type, 1992-2006. Thyroid. 2011;21(2):125-34. [DOI:10.1089/thy.2010.0021] [PMID] [PMCID]
  6. Larijani B, Shirzad M, Mohagheghi M, Haghpanah V, Mosavi-Jarrahi A, Tavangar S, et al. Epidemiologic analysis of the Tehran cancer institute data system registry (TCIDSR). Asian Pac J Cancer Prev. 2004;5(1):36-9.
  7. Haghpanah V, Soliemanpour B, Heshmat R, Mosavi-Jarrahi A, Tavangar S, Malekzadeh R, et al. Endocrine cancer in Iran: based on cancer registry system. Indian journal of cancer. 2006;43(2):80. [DOI:10.4103/0019-509X.25889] [PMID]
  8. Larijani B, Mohagheghi MA, Bastanhagh MH, Mosavi-Jarrahi AR, Haghpanah V, Tavangar SM, et al. Primary thyroid malignancies in Tehran, Iran. Medical principles and practice. 2005;14(6):396-400. [DOI:10.1159/000088112] [PMID]
  9. Sosa JA, Udelsman R. Papillary thyroid cancer. Surgical Oncology Clinics. 2006;15(3):585-601. [DOI:10.1016/j.soc.2006.05.010] [PMID]
  10. Spartalis ED, Karatzas T, Charalampoudis P, Vergadis C, Dimitroulis D. Neglected papillary thyroid carcinoma seven years after initial diagnosis. Case reports in oncological medicine. 2013;2013. [DOI:10.1155/2013/148973] [PMID] [PMCID]
  11. Erden ES, Babayigit C, Davran R, Akin M, Karazincir S, Isaogullari N, et al. Papillary thyroid carcinoma with lung metastasis arising from dyshormonogenetic goiter: a case report. Case reports in medicine. 2013;2013. [DOI:10.1155/2013/813167] [PMID] [PMCID]
  12. Borschitz T, Eichhorn W, Fottner C, Hansen T, Schad A, Schadmand-Fischer S, et al. Diagnosis and treatment of pancreatic metastases of a papillary thyroid carcinoma. Thyroid. 2010;20(1):93-8. [DOI:10.1089/thy.2009.0026] [PMID] [PMCID]
  13. Sherman SI, Tielens ET, Sostre S, Wharam Jr M, Ladenson PW. Clinical utility of posttreatment radioiodine scans in the management of patients with thyroid carcinoma. The Journal of Clinical Endocrinology & Metabolism. 1994;78(3):629-34. https://doi.org/10.1210/jc.78.3.629 [DOI:10.1210/jcem.78.3.8126134]
  14. Haddadi-Nezhad S, Larijani B, Tavangar SM, Nouraei SM. Comparison of fine-needle-nonaspiration with fine-needle-aspiration technique in the cytologic studies of thyroid nodules. Endocrine pathology. 2003;14(4):369-73. [DOI:10.1385/EP:14:4:369]
  15. Greenblatt DY, Woltman T, Harter J, Starling J, Mack E, Chen H. Fine-needle aspiration optimizes surgical management in patients with thyroid cancer. Annals of surgical oncology. 2006;13(6):859-63. [DOI:10.1245/ASO.2006.08.020] [PMID]
  16. Grogan RH, Mitmaker EJ, Clark OH. The evolution of biomarkers in thyroid cancer-from mass screening to a personalized biosignature. Cancers. 2010;2(2):885-912. [DOI:10.3390/cancers2020885] [PMID] [PMCID]
  17. Sanii S, Saffar H, Tabriz HM, Qorbani M, Haghpanah V, Tavangar SM. Expression of matrix metalloproteinase-2, but not caspase-3, facilitates distinction between benign and malignant thyroid follicular neoplasms. Asian Pacific journal of cancer prevention. 2012;13(5):2175-8. [DOI:10.7314/APJCP.2012.13.5.2175] [PMID]
  18. Saffar H, Sanii S, Emami B, Heshmat R, Panah VH, Azimi S, et al. Evaluation of MMP2 and Caspase-3 expression in 107 cases of papillary thyroid carcinoma and its association with prognostic factors. Pathology-Research and Practice. 2013;209(3):195-9. [DOI:10.1016/j.prp.2012.06.011] [PMID]
  19. Haghpanah V, Lashkari A, Moradzadeh K, Tavangar SM. Hypereosinophilia as the presentation of metastatic medullary thyroid carcinoma: a remarkable event. The American journal of the medical sciences. 2007;334(2):131-2. [DOI:10.1097/MAJ.0b013e31812e 872f] [PMID]
  20. Xing M. BRAF mutation in thyroid cancer. Endocrine-related cancer. 2005;12(2):245-62. [DOI:10.1677/erc.1.0978] [PMID]
  21. Faam B, Ghaffari MA, Ghadiri ATA, Azizi F. Epigenetic modifications in human thyroid cancer. Biomedical Reports. 2015;3(1):3-8. [DOI:10.3892/br.2014.375] [PMID] [PMCID]
  22. Mohammadi-Asl J, Larijani B, Khorgami Z, Tavangar S, Haghpanah V, Mehdipour P. Prevalence of BRAFV600E mutation in Iranian patients with papillary thyroid carcinoma: a single-center study. J Appl Sci. 2009;9(19):3593-7. [DOI:10.3923/jas.2009.3593.3597]
  23. Omidfar K, Moinfar Z, Sohi AN, Tavangar SM, Haghpanah V, Heshmat R, et al. Expression of EGFRvIII in thyroid carcinoma: immunohistochemical study by camel antibodies. Immunological investigations. 2009;38(2):165-80. [DOI:10.1080/08820130902735998] [PMID]
  24. Haghpanah V, Shooshtarizadeh P, Heshmat R, Larijani B, Tavangar SM. Immunohistochemical analysis of survivin expression in thyroid follicular adenoma and carcinoma. Applied Immunohistochemistry & Molecular Morphology. 2006;14(4):422-5. [DOI:10.1097/01.pai.0000213100.880 74.b8] [PMID]
  25. El Demellawy D, Nasr A, Alowami S. Application of CD56, P63 and CK19 immunohistochemistry in the diagnosis of papillary carcinoma of the thyroid. Diagnostic pathology. 2008;3(1):5. [DOI:10.1186/1746-1596-3-5] [PMID] [PMCID]
  26. Tavangar S, Monajemzadeh M, Larijani B, Haghpanah V. Immunohistochemical study of oestrogen receptors in 351 human thyroid glands. Singapore medical journal. 2007;48(8):744-7.
  27. Amoli MM, Yazdani N, Amiri P, Sayahzadeh F, Haghpanah V, Tavangar SM, et al. HLA-DR association in papillary thyroid carcinoma. Disease markers. 2010;28(1):49-53. [DOI:10.1155/2010/130276] [PMID] [PMCID]
  28. Sabetkish S, Kajbafzadeh AM, Sabetkish N, Khorramirouz R, Akbarzadeh A, Seyedian SL, et al. Whole‐organ tissue engineering: decellularization and recellularization of three‐dimensional matrix liver scaffolds. Journal of biomedical materials research Part A. 2015;103(4):1498-508. [DOI:10.1002/jbm.a.35291] [PMID]
  29. Kajbafzadeh A-M, Payabvash S, Salmasi AH, Monajemzadeh M, Tavangar SM. Smooth muscle cell apoptosis and defective neural development in congenital ureteropelvic junction obstruction. The Journal of urology. 2006;176(2):718-23. [DOI:10.1016/j.juro.2006.03.041] [PMID]
  30. NASSERI‐MOGHADDAM S, Malekzadeh R, Sotoudeh M, Tavangar M, Azimi K, SOHRABPOUR AA, et al. Lower esophagus in dyspeptic Iranian patients: a prospective study. Journal of gastroenterology and hepatology. 2003;18(3):315-21. [DOI:10.1046/j.1440-1746.2003.02969.x] [PMID]
  31. Natanzi MM, Pasalar P, Kamalinejad M, Dehpour AR, Tavangar SM, Sharifi R, et al. Effect of aqueous extract of Elaeagnus angustifolia fruit on experimental cutaneous wound healing in rats. Acta Medica Iranica. 2012:589-96.
  32. Tavangar SM, Shojaee A, Tabriz HM, Haghpanah V, Larijani B, Heshmat R, et al. Immunohistochemical expression of Ki67, c-erbB-2, and c-kit antigens in benign and malignant pheochromocytoma. Pathology-Research and Practice. 2010;206(5):305-9. [DOI:10.1016/j.prp.2010.01.007] [PMID]
  33. Sarmadi S, Izadi-Mood N, Sotoudeh K, Tavangar SM. Altered PTEN expression; a diagnostic marker for differentiating normal, hyperplastic and neoplastic endometrium. Diagnostic pathology. 2009;4(1):41. [DOI:10.1186/1746-1596-4-41] [PMID] [PMCID]
  34. Alimoghaddam K, Shariftabrizi A, Tavangar M, Sanaat Z, Rostami S, Jahani M, et al. Anti-leukemic and anti-angiogenesis efficacy of arsenic trioxide in new cases of acute promyelocytic leukemia. Leukemia & lymphoma. 2006;47(1):81-8. [DOI:10.1080/10428190500300373] [PMID]
  35. Tavangar SM, Larijani B, Mahta A, Hosseini SMA, Mehrazine M, Bandarian F. Craniopharyngioma: a clinicopathological study of 141 cases. Endocrine pathology. 2004;15(4):339-44. [DOI:10.1385/EP:15:4:339]
  36. Khatami F, Mohammadamoli M, Tavangar SM. Genetic and epigenetic differences of benign and malignant pheochromocytomas and paragangliomas (PPGLs). Endocrine regulations. 2018;52(1):41-54. [DOI:10.2478/enr-2018-0006] [PMID]
  37. Hayes DF, Bast RC, Desch CE, Fritsche Jr H, Kemeny NE, Jessup JM, et al. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. JNCI: Journal of the National Cancer Institute. 1996;88(20):1456-66. [DOI:10.1093/jnci/88.20.1456] [PMID]
  38. Herceg Z, Hainaut P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Molecular oncology. 2007;1(1):26-41. [DOI:10.1016/ j.molonc.2007.01.004] [PMID] [PMCID]
  39. Khatami F, Payab M, Sarvari M, Gilany K, Larijani B, Arjmand B, et al. Oncometabolites as biomarkers in thyroid cancer: a systematic review. Cancer Management and Research. 2019;11:1829. [DOI:10.2147/CMAR.S188661] [PMID] [PMCID]
  40. Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nature Reviews Clinical Oncology. 2008;5(10):588. [DOI:10.1038/ncponc1187] [PMID]
  41. Xing M. Gene methylation in thyroid tumorigenesis. Endocrinology. 2007;148(3):948-53. [DOI:10.1210/en.2006-0927] [PMID]
  42. Phillips T. The role of methylation in gene expression. Nature Education. 2008;1(1):116.
  43. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nature Reviews Genetics. 2008;9(6):465. [DOI:10.1038/nrg2341] [PMID]
  44. Smith JA, Fan C-Y, Zou C, Bodenner D, Kokoska MS. Methylation status of genes in papillary thyroid carcinoma. Archives of Otolaryngology-Head & Neck Surgery. 2007;133(10):1006-11. [DOI:10.1001/archotol.133.10.1006] [PMID]
  45. Hu S, Liu D, Tufano RP, Carson KA, Rosenbaum E, Cohen Y, et al. Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer. International journal of cancer. 2006;119(10):2322-9. [DOI:10.1002/ijc.22110] [PMID]
  46. Xing M, Cohen Y, Mambo E, Tallini G, Udelsman R, Ladenson PW, et al. Early occurrence of RASSF1A hypermethylation and its mutual exclusion with BRAF mutation in thyroid tumorigenesis. Cancer research. 2004;64(5):1664-8. [DOI:10.1158/0008-5472.CAN-03-3242] [PMID]
  47. Mohammadi-asl J, Larijani B, Khorgami Z, Tavangar SM, Haghpanah V, Kheirollahi M, et al. Qualitative and quantitative promoter hypermethylation patterns of the P16, TSHR, RASSF1A and RARβ2 genes in papillary thyroid carcinoma. Medical oncology. 2011;28(4):1123-8. [DOI:10.1007/s12032-010-9587-z] [PMID]
  48. Lim AM, Candiloro IL, Wong N, Collins M, Do H, Takano EA, et al. Quantitative methodology is critical for assessing DNA methylation and impacts on correlation with patient outcome. Clinical epigenetics. 2014;6(1):22. [DOI:10.1186/1868-7083-6-22] [PMID] [PMCID]
  49. Mikeska T, Candiloro IL, Dobrovic A. The implications of heterogeneous DNA methylation for the accurate quantification of methylation. Epigenomics. 2010;2(4):561-73. [DOI:10.2217/epi.10.32] [PMID]
  50. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clinical chemistry. 2003;49(6):853-60. [DOI:10.1373/49.6.853] [PMID]
  51. Wojdacz TK, Dobrovic A. Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic acids research. 2007;35(6):e41. [DOI:10.1093/nar/gkm013] [PMID] [PMCID]
  52. Wojdacz TK, Dobrovic A, Hansen LL. Methylation-sensitive high-resolution melting. Nature protocols. 2008;3(12):1903. [DOI:10.1038/nprot.2008.191] [PMID]
  53. Hussmann D, Hansen LL. Methylation-Sensitive High Resolution Melting (MS-HRM). DNA Methylation Protocols: Springer; 2018. p. 551-71. [DOI:10.1007/978-1-4939-7481-8_28] [PMID]
  54. Dahl C, Grønskov K, Larsen LA, Guldberg P, Brøndum-Nielsen K. A homogeneous assay for analysis of FMR1 promoter methylation in patients with fragile X syndrome. Clinical chemistry. 2007;53(4):790-3. [DOI:10.1373/clinchem.2006.080762] [PMID]
  55. Brigliadori G, Foca F, Dall'Agata M, Rengucci C, Melegari E, Cerasoli S, et al. Defining the cutoff value of MGMT gene promoter methylation and its predictive capacity in glioblastoma. Journal of neuro-oncology. 2016;128(2):333-9. [DOI:10.1007/s11060-016-2116-y] [PMID]
  56. Quillien V, Lavenu A, Karayan‐Tapon L, Carpentier C, Labussière M, Lesimple T, et al. Comparative assessment of 5 methods (methylation‐specific polymerase chain reaction, methylight, pyrosequencing, methylation‐sensitive high‐resolution melting, and immunohistochemistry) to analyze O6‐methylguanine‐DNA‐methyltranferase in a series of 100 glioblastoma patients. Cancer. 2012;118(17):4201-11. [DOI:10.1002/ cncr.27392] [PMID]
  57. Xie H, Tubbs R, Yang B. Detection of MGMT promoter methylation in glioblastoma using pyrosequencing. International journal of clinical and experimental pathology. 2015;8(1):636.
  58. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer research. 2001;61(8):3225-9.
  59. Baylin SB. DNA methylation and gene silencing in cancer. Nature Reviews Clinical Oncology. 2005;2(S1):S4. [DOI:10.1038/ncponc0354] [PMID]
  60. Moore LD, Le T, Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacology. 2013;38(1):23-38. [DOI:10.1038/npp.2012.112] [PMID] [PMCID]
  61. Lopatina N, Haskell JF, Andrews LG, Poole JC, Saldanha S, Tollefsbol T. Differential maintenance and de novo methylating activity by three DNA methyltransferases in aging and immortalized fibroblasts. Journal of cellular biochemistry. 2002;84(2):324-34. [DOI:10.1002/jcb.10015] [PMID]
  62. Yokochi T, Robertson KD. Preferential methylation of unmethylated DNA by mammaliande Novo DNA methyltransferase Dnmt3a. Journal of Biological Chemistry. 2002;277(14):11735-45. [DOI:10.1074/jbc.M106590200] [PMID]
  63. Robert M-F, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nature genetics. 2003;33(1):61. [DOI:10.1038/ng1068] [PMID]
  64. Nuñez NN, Manlove AH, David SS. DNMT1 and Cancer: An Electrifying Link. Chemistry & biology. 2015;22(7):810-1. [DOI:10.1016/j.chembiol.2015.07.004] [PMID]
  65. Rahmani T, Azad M, Chahardouli B, Nasiri H, Vatanmakanian M, Kaviani S. Patterns of DNMT1 Promoter Methylation in Patients with Acute Lymphoblastic Leukemia. International journal of hematology-oncology and stem cell research. 2017; 11(3):172.
  66. Novakovic B, Wong NC, Sibson M, Ng H-K, Morley R, Manuelpillai U, et al. DNA methylation-mediated down-regulation of DNA methyltransferase-1 (DNMT1) is coincident with, but not essential for, global hypomethylation in human placenta. Journal of Biological Chemistry. 2010;285(13):9583-93. [DOI:10.1074/jbc.M109.064956] [PMID] [PMCID]
  67. Bennett KL, Karpenko M, Lin MT, Claus R, Arab K, Dyckhoff G, et al. Frequently methylated tumor suppressor genes in head and neck squamous cell carcinoma. Cancer Res. 2008;68(12):4494-9. [DOI:10.1158/0008-5472.CAN-07-6509] [PMID]
  68. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27-36. [DOI:10.1093/carcin/bgp220] [PMID] [PMCID]
  69. Gömöri É, Pál J, Kovács B, Dóczi T. Concurrent hypermethylation of DNMT1, MGMT and EGFR genes in progression of gliomas. Diagnostic pathology. 2012;7(1):8. [DOI:10.1186/1746-1596-7-8] [PMID] [PMCID]
  70. Li D, Bi F-F, Cao J-M, Cao C, Liu B, Yang Q. Regulation of DNA methyltransferase 1 transcription in BRCA1-mutated breast cancer: a novel crosstalk between E2F1 motif hypermethylation and loss of histone H3 lysine 9 acetylation. Molecular cancer. 2014;13(1):26. https://doi.org/10.1186/1476-4598-13-26 [DOI:10.1186/s12943-014-0285-x] [PMID] [PMCID]
  71. Khatami F, Mohebi SR, Ghiasi S, Haghighi MM, Safaee A, Hashemi M, et al. Amino acid substitution polymorphisms of two DNA methyltransferases and susceptibility to sporadic colorectal cancer. Gastroenterology and Hepatology from bed to bench. 2009;1(3).
  72. Cai Y, Tsai H-C, Yen R-WC, Zhang YW, Kong X, Wang W, et al. Critical threshold levels of DNA methyltransferase 1 are required to maintain DNA methylation across the genome in human cancer cells. Genome research. 2017;27(4):533-44. [DOI:10.1101/gr.208108.116] [PMID] [PMCID]
  73. Zhang Y, Sun B, Huang Z, Zhao D-W, Zeng Q. Shikonin Inhibites Migration and Invasion of Thyroid Cancer Cells by Downregulating DNMT1. Medical science monitor: international medical journal of experimental and clinical research. 2018;24:661. [DOI:10.12659/MSM.908381] [PMID] [PMCID]
  74. Brehar A, Procopiuc C, Paun D, Manda D, Oros S, Caragheorgheopol A, et al., editors. DNMT1 expression in papillary thyroid carcinoma. 16th European Congress of Endocrinology; 2014: BioScientifica. [DOI:10.1530/endoabs.35.P1099]
  75. Cai Y, Tsai H-C, Yen R-WC, Zhang YW, Kong X, Wang W, et al. Critical threshold levels of DNA methyltransferase 1 are required to maintain DNA methylation across the genome in human cancer cells. Genome research. 2017. [DOI:10.1101/gr.208108.116] [PMID] [PMCID]
  76. Tano K, Shiota S, Collier J, Foote RS, Mitra S. Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proceedings of the National Academy of Sciences. 1990;87(2):686-90. [DOI:10.1073/pnas.87.2.686] [PMID] [PMCID]
  77. Natarajan A, Vermeulen S, Darroudi F, Valentine MB, Brent TP, Mitra S, et al. Chromosomal localization of human O6-methylguanine-DNA methyltransferase (MGMT) gene by in situ hybridization. Mutagenesis. 1992;7(1):83-5. [DOI:10.1093/mutage/7.1.83] [PMID]
  78. Halford S, Rowan A, Sawyer E, Talbot I, Tomlinson I. O6-methylguanine methyltransferase in colorectal cancers: detection of mutations, loss of expression, and weak association with G: C> A: T transitions. Gut. 2005;54(6):797-802. [DOI:10.1136/gut.2004.059535] [PMID] [PMCID]
  79. CAbRINI G, FAbbRI E, Lo Nigro C, DEChECChI MC, GAMbARI R. Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma. International journal of oncology. 2015;47(2):417-28. [DOI:10.3892/ijo.2015.3026] [PMID] [PMCID]
  80. Nakagawachi T, Soejima H, Urano T, Zhao W, Higashimoto K, Satoh Y, et al. Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene. 2003;22(55):8835. [DOI:10.1038/sj.onc.1207183] [PMID]
  81. Zhang W, Zhang J, Hoadley K, Kushwaha D, Ramakrishnan V, Li S, et al. miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro-oncology. 2012;14(6):712-9. [DOI:10.1093/neuonc/nos089] [PMID] [PMCID]
  82. Soejima H, Zhao W, Mukai T. Epigenetic silencing of the MGMT gene in cancer. Biochemistry and cell biology. 2005;83(4):429-37. [DOI:10.1139/o05-140] [PMID]
  83. Osanai T, Takagi Y, Toriya Y, Nakagawa T, Aruga T, Iida S, et al. Inverse correlation between the expression of O 6-methylguanine-DNA methyl transferase (MGMT) and p53 in breast cancer. Japanese journal of clinical oncology. 2005;35(3):121-5. [DOI:10.1093/jjco/hyi036] [PMID]
  84. Costello JF, Futscher BW, Tano K, Graunke DM, Pieper RO. Graded methylation in the promoter and body of the O6-methylguanine DNA methyltransferase (MGMT) gene correlates with MGMT expression in human glioma cells. Journal of Biological Chemistry. 1994;269(25):17228-37.
  85. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer research. 1999;59(4):793-7.
  86. Esteller M, Risques R-A, Toyota M, Capella G, Moreno V, Peinado MA, et al. Promoter hypermethylation of the DNA repair gene O6-methylguanine-DNA methyltransferase is associated with the presence of G: C to A: T transition mutations in p53 in human colorectal tumorigenesis. Cancer Research. 2001;61(12):4689-92.
  87. Herfarth KKF, Brent TP, Danam RP, Remack JS, Kodner IJ, Wells SA, et al. A specific CpG methylation pattern of the MGMT promoter region associated with reduced MGMT expression in primary colorectal cancers. Molecular carcinogenesis. 1999;24(2):90-8. https://doi.org/10.1002/(SICI)1098-2744(199902)24:2 3.0.CO;2-B [DOI:10.1002/(SICI)1098- 2744(199902)24:23.0.CO;2-B]
  88. Stephen J, Chen K, Merritt J, Chitale D, Divine G, Worsham M. Methylation markers differentiate thyroid cancer from benign nodules. Journal of endocrinological investigation. 2018;41(2):163-70. [DOI:10.1007/s40618-017-0702-2] [PMID]
  89. Santos JC, Bastos AU, Cerutti JM, Ribeiro ML. Correlation of MLH1 and MGMT expression and promoter methylation with genomic instability in patients with thyroid carcinoma. Bmc Cancer. 2013;13(1):79. [DOI:10.1186/1471-2407-13-79] [PMID] [PMCID]
  90. Gopal E, Fei Y-J, Sugawara M, Miyauchi S, Zhuang L, Martin P, et al. Expression of slc5a8 in kidney and its role in Na+-coupled transport of lactate. Journal of Biological Chemistry. 2004;279(43):44522-32. [DOI:10.1074/jbc.M405365200] [PMID]
  91. Takebe K, Nio J, Morimatsu M, Karaki S-I, Kuwahara A, Kato I, et al. Histochemical demonstration of a Na+-coupled transporter for short-chain fatty acids (slc5a8) in the intestine and kidney of the mouse. Biomedical Research. 2005;26(5):213-21. [DOI:10.2220/biomedres.26.213] [PMID]
  92. Iwanaga T, Takebe K, Kato I, Karaki S-I, Kuwahara A. Cellular expression of monocarboxylate transporters (MCT) in the digestive tract of the mouse, rat, and humans, with special reference to slc5a8. Biomedical research. 2006;27(5):243-54. [DOI:10.2220/biomedres.27.243] [PMID]
  93. Martin PM, Gopal E, Ananth S, Zhuang L, Itagaki S, Prasad BM, et al. Identity of SMCT1 (SLC5A8) as a neuron‐specific Na+‐coupled transporter for active uptake of l‐lactate and ketone bodies in the brain. Journal of neurochemistry. 2006;98(1):279-88. [DOI:10.1111/j.1471-4159.2006.03878.x] [PMID]
  94. Galrão AL, Camargo RY, Friguglietti CU, Moraes L, Cerutti JM, Serrano-Nascimento C, et al. Hypermethylation of a New Distal Sodium/Iodide Symporter (NIS) Enhancer (NDE) Is Associated With Reduced NIS Expression in Thyroid Tumors. The Journal of Clinical Endocrinology & Metabolism. 2014;99(6):E944-E52. [DOI:10.1210/jc.2013-1450] [PMID]
  95. Khatami F, Larijani B, Heshmat R, Keshtkar A, Mohammadamoli M, Teimoori-Toolabi L, et al. Meta-analysis of promoter methylation in eight tumor-suppressor genes and its association with the risk of thyroid cancer. PloS one. 2017;12(9):e0184892. [DOI:10.1371/journal.pone.0184892] [PMID] [PMCID]
  96. Schagdarsurengin U, Gimm O, Dralle H, Hoang-Vu C, Dammann R. CpG island methylation of tumor-related promoters occurs preferentially in undifferentiated carcinoma. Thyroid. 2006;16(7):633-42. [DOI:10.1089/thy.2006.16.633] [PMID]
  97. Porra V, Ferraro-Peyret C, Durand C, Selmi-Ruby S, Giroud H, Berger-Dutrieux N, et al. Silencing of the tumor suppressor gene SLC5A8 is associated with BRAF mutations in classical papillary thyroid carcinomas. The Journal of Clinical Endocrinology & Metabolism. 2005;90(5):3028-35. [DOI:10.1210/jc.2004-1394] [PMID]
  98. Schagdarsurengin U, Gimm O, Dralle H, Hoang-Vu C, Dammann R. CpG island methylation of tumor-related promoters occurs preferentially in undifferentiated carcinoma. Thyroid. 2006;16(7):633-42. [DOI:10.1089/thy.2006.16.633] [PMID]
  99. Pabalan N, Kunjantarachot A, Ruangpratheep C, Jarjanazi H, Christofolini DM, Barbosa CP, et al. Potential of RASSF1A promoter methylation as biomarker for endometrial cancer: A systematic review and meta-analysis. Gynecologic oncology. 2017;146(3):603-8. [DOI:10.1016/j.ygyno.2017.06.017] [PMID]
  100. Tommasi S, Dammann R, Zhang Z, Wang Y, Liu L, Tsark WM, et al. Tumor susceptibility of Rassf1a knockout mice. Cancer Research. 2005;65(1):92-8.
  101. Amato E, Barbi S, Fassan M, Luchini C, Vicentini C, Brunelli M, et al. RASSF1 tumor suppressor gene in pancreatic ductal adenocarcinoma: correlation of expression, chromosomal status and epigenetic changes. BMC cancer. 2016;16(1):11. [DOI:10.1186/s12885-016-2048-0] [PMID] [PMCID]
  102. Vos MD, Ellis CA, Bell A, Birrer MJ, Clark GJ. Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. Journal of Biological Chemistry. 2000;275(46):35669-72. [DOI:10.1074/jbc.C000463200] [PMID]
  103. Xu H, Zhan W, Chen Z. Ras-Association Domain Family 1 Isoform A (RASSF1A) Gene Polymorphism rs1989839 is Associated with Risk and Metastatic Potential of Osteosarcoma in Young Chinese Individuals: A Multi-Center, Case-Control Study. Medical science monitor: international medical journal of experimental and clinical research. 2016;22:4529. [DOI:10.12659/MSM.901994] [PMID] [PMCID]
  104. Grawenda A, O'neill E. Clinical utility of RASSF1A methylation in human malignancies. British journal of cancer. 2015;113(3):372. [DOI:10.1038/bjc.2015.221] [PMID] [PMCID]
  105. da Costa Prando É, Cavalli LR, Rainho C. Evidence of epigenetic regulation of the tumor suppressor gene cluster flanking RASSF1 in breast cancer cell lines. Epigenetics. 2011;6(12):1413-24. [DOI:10.4161/epi.6.12.18271] [PMID] [PMCID]
  106. Shao C, Dai W, Li H, Tang W, Jia S, Wu X, et al. The relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma: A meta-analysis and bioinformatics. PloS one. 2017;12(2):e0171676. [DOI:10.1371/journal.pone. 0171676] [PMID] [PMCID]
  107. Huang Y, Guan H, Liu C, Liu D, Xu B, Jiang L, et al. Association between RASSF1A promoter methylation and renal cell cancer susceptibility: a meta-analysis. Genet Mol Res. 2016;15(April (2)). [DOI:10.4238/gmr.15026994]
  108. Wen G, Wang H, Zhong Z. Associations of RASSF1A, RARβ, and CDH1 promoter hypermethylation with oral cancer risk: A PRISMA-compliant meta-analysis. Medicine. 2018;97(11). [DOI:10.1097/MD.0000000000009971] [PMID] [PMCID]
  109. Schagdarsurengin U, Gimm O, Hoang-Vu C, Dralle H, Pfeifer GP, Dammann R. Frequent epigenetic silencing of the CpG island promoter of RASSF1A in thyroid carcinoma. Cancer research. 2002;62(13):3698-701.
  110. Nakamura N, Carney JA, Jin L, Kajita S, Pallares J, Zhang H, et al. RASSF1A and NORE1A methylation and BRAF V600E mutations in thyroid tumors. Laboratory investigation. 2005;85(9):1065. [DOI:10.1038/labinvest.3700306] [PMID]
  111. Zhang K, Li C, Liu J, Tang X, Li Z. DNA methylation alterations as therapeutic prospects in thyroid cancer. Journal of endocrinological investigation. 2018:1-8.
  112. Niu H, Yang J, Yang K, Huang Y. The relationship between RASSF1A promoter methylation and thyroid carcinoma: A meta-analysis of 14 articles and a bioinformatics of 2 databases (PRISMA). Medicine. 2017;96(46). [DOI:10.1097/MD.0000000000008630] [PMID] [PMCID]
  113. Bai J, Zhang X, Hu K, Liu B, Wang H, Li A, et al. Silencing DNA methyltransferase 1 (DNMT1) inhibits proliferation, metastasis and invasion in ESCC by suppressing methylation of RASSF1A and DAPK. Oncotarget. 2016;7(28):44129-41. [DOI:10.18632 /oncotarget.9866] [PMID] [PMCID]
  114. Zhang H, He J, Li J, Tian D, Gu L, Zhou M. Methylation of RASSF1A gene promoter is regulated by p53 and DAXX. The FASEB Journal. 2013;27(1):232-42. [DOI:10.1096 /fj.12-215491] [PMID] [PMCID]
  115. Puto LA, Reed JC. Daxx represses RelB target promoters via DNA methyltransferase recruitment and DNA hypermethylation. Genes & development. 2008;22(8):998-1010. [DOI:10.1101/gad.1632208] [PMID] [PMCID]