Document Type : Original Research

Authors

1 Dept. of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Iran

2 Dept. of Pathology, Imam Hospital Complex, Tehran University of Medical Sciences, Iran

Abstract

Background & Objective Angiogenesis is an essential component of tumor growth. Expression of PSMA on the neo-vasculature of many solid tumors, including glioblastoma multi-form, has been determined. The pattern of expression suggests that PSMA may play a functional role in angiogenesis.
Methods: expression of PSMA in different grades of brain glioma was evaluated by the immunohistochemistry method to determine the probable usefulness of anti-PSMA antibody as complementary target therapy in different grades of glioma.
Results: Overall, 72 cases of low (grade I and II) and high (grade III and IV) grade gliomas were evaluated for expression of PSMA. Positive PSMA staining was observed in 12 (33.3%) of high grade and 3 (8.3%) of low grade gliomas. Although, high grade tumors more commonly had positive result for PSMA (P value=0.009), the intensity of staining was significantly stronger in low-grade tumors (P value=0.009).
Conclusion: Expression of PSMA in different grades of glioma might provide a basis for further investigations focusing on selective target therapy in combination with the current standard care in all glioma grades, to improve treatment efficacy.

Keywords

  1. Carlsson SK, Brothers SP, Wahlestedt C. Enmerging treatment strategies for glioblastoma multiforme. EMBO Molecular Medicine. 2014;6(11):1359-70.
  2. Nomura N, Pastorino S, Jiang P, et al. Prostate specific membrane antigen (PSMA) expression in primary gliomas and breast cancer brain metastasis. Caner Cell International. 2014;14:26.
  3. Patel MA, Kim JE, Ruzevick J,et al. The Future of Glioblastoma Therapy: Synergism of Standard of Care and Immunotherapy Cancers. 2014;6:1953-85.
  4. DeAngelis L. Brain tumors. N  England J Med. 2001;344:114-23.
  5. Parsa A, Waldron J, Panner A, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2006;13:84-8.
  6. Wernicke AG, Edgar MA, Lavi E, et al. Prostate Specific Membrane Antigen as a potential Novel Vascular Target for Treatment of Glioblastoma Multiforme. Aarchives of Pathology and Laboratory Medicine. 2011;135:1486-9.
  7. Shi W, Siemann D. Targeting the tumor vasculature: enhancing antitumor efficacy through combination treatment with ZD6126 and ZD6474. In Vivo. 2005;19(6):1045-50.
  8. Burkhardt J, Hofstetter C, Santillan A, et al. Orthotopic glioblastoma stem-like cell xenograft model i mice to evaluateintra-arterial delivery of bevacizumab:from bedside to bench. J Clin Neurosci. 2012;19:1568-72.
  9. Chen K, Huang Y-h, Chen J-l. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacologica Sinica. 2013;34:732-40.
  10. pasqualini R, Arap W, McDonald D. Probing the stractural and molecular diversity f tumor vasculature. Trends Molecular Medicine. 2002;8(12):563-71.
  11. Plate K, Risau W. Angigenesis in malignant gliomas. Glia. 1995;15(3):339-47.
  12. Scappaticci F. Mechanisms and future directions for angiogenesis based cancer therapies. Journal of Clinical Oncology. 2002;20(18):3906-27.
  13. Chang S, Reuter V, Heston W, Gaudin P. Metastatic Renal Cell Carcinoma neovasulature express Prostatic-Specific membrane antigen. Urology. 2001;57(4):801-5.
  14. Gopalakrishnapillai A, Sonali PB, Jason JC, et al. Assossiation of Prostate-specific membrane antigen with caveolin-1 and its caveola-dependent internalization in microvascular endothelial cells:implications for targeting to tumor vasculture Microvascular research. 2006;72:45-61.
  15. Grau SJ, Trillsch F, Luttichau Iv, et al. Lymphatic phenotype in tumor vessels in  malignant gliomas. Neuropathology and Applied Neurobiology. 2008;34:675-9.
  16. Bander N, Milowsky M, Nanus D, et al. Phase I trial of 177 lutetium-labeled J591, a monoclonal antibody to prostate-membrane antigen , in patients with androgen independent prostate cancer. Journal of Clinical Oncology. 2005;23(13):4591-601.
  17. Liu H, Moy P, Kim S, al e. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium Cancer Research. 1997;57(17):3629-34.
  18. Mhawech-Fauceglia P, Zhang S, Terraccino L,et al. prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: an immunohistochemical study using multiple tumor tissue micoarray technique Histopathology. 2007;50(4):472-83.
  19. chang SS, Reuter VE, Heston WDW,et al. Five different Anti-Prostate- Specific Membrane Antigen (PSMA) antibodies confirm PSMA expression in tumor associated neovasculature. Cancer Research. 1999;59:3192.
  20. Akhtar NH, Pail O, Saran A,et al. Prostate-Spaecific Membrane Antigen-Based Therapeutics. Advances in Urology. 2012;Article ID973820(doi:10.1155/2012/973820).
  21. Troyler J, Beckett M, Jr GW. Detection and characterization of the prostate-specific membrane antigen(PSMA) in tissue extracts and body fluid,". International journal of Cancer. 1995;26(5):552-8.
  22. Tsui P, Rubenstein N, Guinan P. Correlation between PSMA and VEGF expression as markers for LNCap tumor angiogenesis. Journal of Biomedicine and Biotechnology. 2005;3:287-90.
  23. Milowsky M, Nanus D, Kostakoglu L,et al. Vn advanced solid tumorsascular targeted therapy with anti Prostate-specific membrane antigen monoclonal antibody J591 i. Journal of Clinical Oncology. 2007;25(5):540-7.
  24. Morris M, Pandit-Taskar N, Divgi C,et al. Phase I evaluation of J591 as a vascular targeting agent in progressive solid tumors. Clinical Cancer Research. 2007;13(9):2707-13.
  25. Haffner M, Kronberger I, Ross J, et al. Prostate-Specific Membrane Antigen expression  in the neovasulature of gastric and colorectal cancers. Human Pathology. 2009;40:1754-62.
  26. Sacha P, Zamecnik J, Barinka C, et al. Expression of glutamate carboxypeptidase II in human brain. NeuroScience. 2007;144:1361-72.
  27. Kirsch M, Schackert G, Black P. Anti-angiogenic treatment strategies for malignant brain tumours. Journal of Neurooncology. 2000;50:149-63.
  28. Roskoski R. Sanitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem Biophys Res Commun. 2007;356:323-8.
  29. Takano S, Kamiyama H, Tsuboi K, Matsumura A. Angiogenesis and angiotherapy for malignant gliomas. Brain Tumor Pathology. 2004;21:69-73.
  30. Grau S, Trillsch F, Herms J, et al. Expression of VEGFR3in glioma endothelium correlates with tumour grade. Journal of Neurooncology. 2007;82:141-50.
  31. Jenny B, Harrison J, Baetens D, et al. Expression and localization of VEGF-C and VEGFR-3 in glioblastomas and haemangioblastomas. Journal of pthology. 2006;209:34-43.
  32. Ferrara N, Hillan K, Novotny W. Bevacizumab(Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333:328-35.
  33. Groot Jd, Fuller G, Kumar A, Piao Y, Eterovic K, Ji Y, et al. Tumor invasion after treatment of glioblastoma with bevacizumab:radiographic and pathologic correlation in humans and mice. Neuro-Oncol. 2010;12:233-42.
  34. Brastianos P, Bachelor T. VEGF inhibitors in brain tumors. Clin Adv Hematol Oncol. 2009;7:753-60.
  35. Carbonell W, Ansorge O, Sibson N, Muschel R. The vascular basement membrane as "soil" in brain metastasis. Plos One. 2009;4:e5857.
  36. Jain R, diTomaso E, Duda D,et al. Angiogenesis in brain tumors. Nat  Rev Neurosci. 2007;8:610-22.
  37. Leenders W, Kusters B, Verrijp K, et al. Antiangiogenic therapy of cerebral melanoma metstases results in sustained tumor progression via vessel co-option. Clinical Cancer Research. 2004;10:6222-30.
  38. Paez-Ribes M, Allen E, Hudock J, Takeda T, et al. Antiangiogenic therapy elicits malignant progression of tumours to increased local invasion and distant metastasis. Cancer Cell. 2009;15:220-31.
  39. Grant C, Caromile L, Ho V,et al. Prostate specific membrane antigen(PSMA) regulates angiogenesis independently of VEGF during ocular veovascularization. Plos One. 2012;7:e41285.