Document Type : Original Research

Authors

1 Department of Hematology and Blood Bank, Faculty of Medicine, Cancer Molecular Pathology Research Center, Ghaem Medical Center Mashhad University of Medical Sciences, Mashhad, Iran

2 Medical Genetic Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Background & Objective: One of the major genetic causes of recurrent spontaneous abortions is parental chromosomal abnormalities. The objectives of the study were to determine, compare and analyze the incidence and distribution of chromosomal abnormalities in couples with recurrent miscarriages from Northeastern Iran.
Methods: This study was conducted at Ghaem Hospital, Mashhad, Iran. We evaluated karyotype results of 608 couples with history of recurrent spontaneous abortion. The standard method was used for culturing peripheral venous blood lymphocytes.
Results: Chromosome aberrations were detected in 43 patients (3.54%), including 25 females and 18 males. Structural chromosomal abnormality was detected in 40 cases, including balanced translocations (25 cases), robertsonian translocations (4 cases), inversions (10 cases) and numerical chromosome aberrations (3 cases). Polymorphic variants were observed in 22 individuals.
Conclusion: The frequency of chromosomal abnormalities in couples with Recurrent Spontaneous Abortion (RSA) in our study is 3.54%. Reciprocal translocation, pericentric inversions, robertsonian translocations, and numerical abnormality observed among couples who had experienced recurrent spontaneous abortions and that these couples might benefit from cytogenetic analysis. 

Keywords

Main Subjects

Copyright © 2021. This is an open-access article distributed under the terms of the Creative Commons Attribution- 4.0 International License which permits Share, copy and redistribution of the material in any medium or format or adapt, remix, transform, and build upon the material for any purpose, even commercially.

  1. Boue A, Boue J, Gropp A. Cytogenetics of pregnancy wastage. Advances in Human Genetics 14: Springer; 1985. p. 1-57. [DOI:10.1007/978-1-4615-9400-0_1]
  2. COULAM CB. Epidemiology of recurrent spontaneous abortion. American Journal of Reproductive Immunology. 1991;26(1):23-7. [DOI:10.1111/j.1600-0897.1991.tb00697.x]
  3. Smeets DF. Historical prospective of human cytogenetics: from microscope to microarray. Clinical biochemistry. 2004;37(6):439-46. [DOI:10.1016/j.clinbiochem.2004.03.006]
  4. Daya S, Stephenson MD. Frequency of factors associated with habitual abortion in 197 couples. Fertility and sterility. 1996;66(1):24-9. [DOI:10.1016/S0015-0282(16)58382-4]
  5. Kajii T, Ferrier A. Cytogenetics of aborters and abortuses. American journal of obstetrics and gynecology. 1978;131(1):33-8. [DOI:10.1016/0002-9378(78)90470-2]
  6. Papp Z, Gardó S, Dolhay B. Chromosome study of couples with repeated spontaneous abortions. Fertility and sterility. 1974;25(8):713. [DOI:10.1016/S0015-0282(16)40573-X]
  7. Campana M, Serra A, Neri G, Reynolds JF. Role of chromosome aberrations in recurrent abortion: a study of 269 balanced translocations. American Journal of Medical Genetics. 1986;24(2):341-56. [DOI:10.1002/ajmg.1320240214]
  8. Ayatollahi H, Safaei A, Vasei M. Cytogenetic Analysis of Patients with Primary Amenorrhea in Southwest of Iran. Iranian Journal of Pathology. 2010;5(3):121-6.
  9. Flynn H, Yan J, Saravelos SH, Li TC. Comparison of reproductive outcome, including the pattern of loss, between couples with chromosomal abnormalities and those with unexplained repeated miscarriages. J Obstet Gynaecol Res. 2014;40(1):109-16. [DOI:10.1111/jog.12133]
  10. Fan HT, Zhang M, Zhan P, Yang X, Tian WJ, Li RW. Structural chromosomal abnormalities in couples in cases of recurrent spontaneous abortions in Jilin Province, China. Genet Mol Res. 2016;15(1). [DOI:10.4238/gmr.15017443]
  11. De P, Chakravarty S, Chakravarty A. Novel balanced chromosomal translocations in females with recurrent spontaneous abortions: Two case studies. Journal of human reproductive sciences. 2015;8(2):114-7. [DOI:10.4103/0974-1208.158623]
  12. Pourjafari B, Pour-Jafari H, Farimani M, Ghahramani S, Saleh EK. Genetic counseling in carriers of reciprocal translocations involving two autosomes. Indian journal of human genetics. 2012;18(2):250-3. [DOI:10.4103/0971-6866.100802]
  13. Rimoin DL, Pyeritz RE, Korf B. Emery and Rimoin's essential medical genetics: Elsevier; 2013.
  14. Dave BJ, Sanger WG. Role of cytogenetics and molecular cytogenetics in the diagnosis of genetic imbalances. Semin Pediatr Neurol. 2007;14(1):2-6. [DOI:10.1016/j.spen.2006.11.003]
  15. Martinez-Castro P, Ramos MC, Rey JA, Benitez J, Sanchez Cascos A. Homozygosity for a Robertsonian translocation (13q14q) in three offspring of heterozygous parents. Cytogenet Cell Genet. 1984;38(4):310-2. [DOI:10.1159/000132080]
  16. Fauth C, Bartels I, Haaf T, Speicher MR. Additional dark G-band in the p-arm of chromosome 19 due to a paracentric inversion with a breakpoint in the pericentromeric heterochromatin. Am J Med Genet. 2001;103(2):160-2. [DOI:10.1002/ajmg.1520]
  17. Norton ME, Kuller JA, Dugoff L. Genética perinatal: Elsevier; 2019.
  18. Liehr T, Weise A. Frequency of small supernumerary marker chromosomes in prenatal, newborn, developmentally retarded and infertility diagnostics. Int J Mol Med. 2007;19(5):719-31. [DOI:10.3892/ijmm.19.5.719]
  19. Čulić V, Lasan-Trcić R, Liehr T, Lebedev IN, Pivić M, Pavelic J, et al. A Familial Small Supernumerary Marker Chromosome 15 Associated with Cryptic Mosaicism with Two Different Additional Marker Chromosomes Derived de novo from Chromosome 9: Detailed Case Study and Implications for Recurrent Pregnancy Loss. Cytogenet Genome Res. 2018;156(4):179-84. [DOI:10.1159/000494822]
  20. Manvelyan M, Riegel M, Santos M, Fuster C, Pellestor F, Mazaurik ML, et al. Thirty-two new cases with small supernumerary marker chromosomes detected in connection with fertility problems: detailed molecular cytogenetic characterization and review of the literature. Int J Mol Med. 2008;21(6):705-14. [DOI:10.3892/ijmm.21.6.705]
  21. Čulić V, Lasan-Trcić R, Liehr T, Lebedev IN, Pivić M, Pavelic J, et al. A Familial Small Supernumerary Marker Chromosome 15 Associated with Cryptic Mosaicism with Two Different Additional Marker Chromosomes Derived de novo from Chromosome 9: Detailed Case Study and Implications for Recurrent Pregnancy Loss. Cytogenetic and Genome Research. 2018;156(4):179-84. [DOI:10.1159/000494822]
  22. Farcas S, Belengeanu V, Stoian M, Stoicanescu D, Popa C, Andreescu N. Considerations regarding the implication of polymorphic variants and chromosomal inversions in recurrent miscarriage. Off J Romanian Soci Pediatr Surg. 2007;10(39-40):7-11.
  23. Mozdarani H, Meybodi AM, Karimi H. Impact of pericentric inversion of Chromosome 9 [inv (9) (p11q12)] on infertility. Indian J Hum Genet. 2007;13(1):26-9. [DOI:10.4103/0971-6866.32031]