Document Type : Original Research

Authors

1 Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2 Department of Biochemistry, Abadan Faculty of Medical Sciences, Abadan, Iran

3 Biotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

4 Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

10.30699/ijp.2020.120392.2310

Abstract

Background & objectives: Overexpression of human epidermal growth factor receptor 2 (HER2) causes cell transformation and development of various types of malignancies. Idarubicin is an effective anti-neoplastic drug but specific delivery of it to the targeted cells is still a great challenge. Affibody as a cost-effective peptide molecule with low molecular weight has a high affinity for HER2 receptors. Breast and ovarian cancers as wide speared types of malignancies are associated with high expression of HER2. In the current study, we assessed the cytotoxic effects of idarubicin-ZHER2 affibody conjugate on the positive-HER2 cancer cell lines. 
Methods: The cytotoxic effects of constructed idarubicin-ZHER2 affibody conjugate on the SK-BR-3, SK-OV-3, and MCF-7 cells with various levels of HER2 expression were evaluated by MTT assay after 48 hours of incubation time.
Results: Idarubicin showed a potent and dose-dependent cytotoxic effect against all treated cell lines while the SK-OV-3 cells were significantly more sensitive. The dimeric form of the ZHER2 affibody molecule showed a mild effect on the cell viability of all treated cells at its optimum concentration. The constructed Idarubicin-ZHER2 affibody conjugate decreased the viability of SK-OV-3 cells at its optimal concentration, more efficiently and specifically than other treated cells. 
Conclusion: The ZHER2-affibody conjugate of idarubicin has a more specific cytotoxic effect compared with idarubicin alone against HER2-overexpressing ovarian cancerous cells. It appears the ZHER2-affibody conjugate of idarubicin has great potential to be implicated as an innovative anti-cancer agent in future clinical trials in patients with HER2-overexpressing ovarian cancer.

Highlights

  • Idarubicin has a potent and dose-dependent cytotoxic effect against breast and ovarian cancerous cells.
  • The ZHER2-affibody conjugate of idarubicin has a more potent cytotoxic effect than idarubicin alone against HER2-overexpressing malignant cells.
  • Idarubicin ZHER2-affibody conjugate has great potential to be considered as an anti-cancer agent in the future clinical trials in patients with HER2-overexpressing ovarian cancer.

Keywords

Main Subjects

Ring KL, Pakis J, Jazaeri AA. Immune checkpoint inhibitors in the treatment of gynecologic malignancies. J Cancer. 2016; 22(2): 101-107. [DOI:10.1097/PPO.0000000000000179] [PMID]

Jelovac D, Armstrong DK. Recent progress in the diagnosis and treatment of ovarian cancer. CA Cancer J. Clin. 2011;61(3):183-203. [DOI:10.3322/caac.20113] [PMID] [PMCID]

Dancey J. Targeted therapies and clinical trials in ovarian cancer. Ann Oncol. 2013; 24(suppl_10): x59-x63. [DOI:10.1093/annonc/mdt473] [PMID]

Makhija S, Amler LC, Glenn D, Ueland FR, Gold MA, Dizon DS, et al. Clinical activity of gemcitabine plus pertuzumab in platinum-resistant ovarian cancer, fallopian tube cancer, or primary peritoneal cancer. J Clin Oncol. 2009; 28(7): 1215-1223. [DOI:10.1200/JCO.2009.22.3354] [PMID]

Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, et al. Cancer statistics, 2004. CA Cancer J Clin; 2004;54(1):8-29. [DOI:10.3322/canjclin.54.1.8] [PMID]

Nahta R, Yu D, Hung MC, Hortobagyi GN. Esteva FJ Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 2006; 3(5): 269-80. [DOI:10.1038/ncponc0509] [PMID]

Spigel DR, Burstein HJ. HER2 overexpressing metastatic breast cancer. Curr Treat Options Oncol. 2002. 3(2): 163-174. [DOI:10.1007/s11864-002-0062-8] [PMID]

Nahta R. New developments in the treatment of HER2-positive breast cancer. Breast Cancer. 2012; 4: 53-64. [DOI:10.2147/BCTT.S24976] [PMID] [PMCID]

Heyerdahl H, Abbas N, Brevik EM, Mollatt C, Dahle J. Fractionated therapy of HER2-expressing breast and ovarian cancer xenografts in mice with targeted alpha emitting 227Th-DOTA-p-benzyl-trastuzumab. PloS one. 2012; 7(8): e42345. [DOI:10.1371/journal.pone.0042345] [PMID] [PMCID]

Meert AP1, Martin B, Delmotte P, Berghmans T, Lafitte JJ, Mascaux C, et al. The role of EGF-R expression on patient survival in lung cancer: a systematic review with meta-analysis. Eur Respir J. 2002;20(4):975-81. [DOI:10.1183/09031936.02.00296502] [PMID]

James ND, Atherton PJ, Jones J, Howie AJ, Tchekmedyian S, Curnow RT. A phase II study of the bispecific antibody MDX-H210 (anti-HER2× CD64) with GM-CSF in HER2+ advanced prostate cancer. Br J Cancer. 2001;85(2):152-6. [DOI:10.1054/bjoc.2001.1878] [PMID] [PMCID]

Laé M, Couturier J, Oudard S, Radvanyi F, Beuzeboc P, Vieillefond A. Assessing HER2 gene amplification as a potential target for therapy in invasive urothelial bladder cancer with a standardized methodology: results in 1005 patients. Ann Oncol. 2009; 21(4): 815-819. [DOI:10.1093/annonc/mdp488] [PMID] [PMCID]

Serrano-Olvera A, Dueñas-González A, Gallardo-Rincón D, Candelaria M, De la Garza-Salazar J. Prognostic, predictive and therapeutic implications of HER2 in invasive epithelial ovarian cancer. Cancer Treat Rev. 2006; 32(3): 180-190. [DOI:10.1016/j.ctrv.2006.01.001] [PMID]

Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ. et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest. 2000; 105(8): R15-R24. [DOI:10.1172/JCI8829] [PMID] [PMCID]

Alley SC, Okeley NM, Senter PD. Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol, 2010. 14(4): 529-537. [DOI:10.1016/j.cbpa.2010.06.170] [PMID]

Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blättler WA,et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008; 68(22): 9280-9290. [DOI:10.1158/0008-5472.CAN-08-1776] [PMID]

Uhlén M, Guss B, Nilsson B, Gatenbeck S, Philipson L, Lindberg M. Complete sequence of the staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J Biol Chem. 1984; 259(3): 1695-1702.

Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larsson B, Höidén-Guthenberg I,et al., Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res. 2006; 66(8): 4339-4348. [DOI:10.1158/0008-5472.CAN-05-3521] [PMID]

Orlova A1, Nilsson FY, Wikman M, Widström C, Ståhl S, Carlsson J, et al. Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 affibody for single-photon imaging of HER2 expression in tumors. J Nucl Med. 2006; 47(3): 512-519.

Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010. 146(3): 264-275. [DOI:10.1016/j.jconrel.2010.04.009] [PMID] [PMCID]

Puri A, Kramer-Marek G, Campbell-Massa R, Yavlovich A, Tele SC, Lee SB, et al. HER2-specific affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J Liposome Res. 2008. 18(4): 293-307. [DOI:10.1080/08982100802457377] [PMID] [PMCID]

Zhang Y, Jiang S2, Zhang D3, Bai X2, Hecht SM2, Chen S. DNA-affibody nanoparticles for inhibiting breast cancer cells overexpressing HER2. Chem Commun (Camb). 2017; 53(3): 573-576. [DOI:10.1039/C6CC08495H] [PMID]

Ghanemi M, Pourshohod A, Ghaffari MA, Kheirollah A, Amin M, Zeinali M, et al., Specific targeting of HER2-positive head and neck squamous cell carcinoma line HN5 by Idarubicin-ZHER2 affibody conjugate. Curr Cancer Drug Targets. 2019. 19(1): 65-73. [DOI:10.2174/1568009617666170427105417] [PMID]

Eigenbrot C, Ultsch M, Dubnovitsky A, Abrahmsén L, Härd T. Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc Natl Acad Sci USA. 2010. 107(34): 15039-15044. [DOI:10.1073/pnas.1005025107] [PMID] [PMCID]

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.1976; 72(1-2): 248-254. [DOI:10.1016/0003-2697(76)90527-3]

Berens ME, Saito T, Welander CE, Modest EJ. Antitumor activity of new anthracycline analogues in combination with interferon alfa. Cancer Chemother Pharmacol. 1987, 19 (4), 301-306; [DOI:10.1007/BF00261477]

Gewirtz DA, Randolph JK, Chawla J, Orr MS, Fornari FA. Induction of DNA damage, inhibition of DNA synthesis and suppression of c-myc expression by the anthracycline analog, idarubicin (4-demethoxy-daunorubicin) in the MCF-7 breast tumor cell line. Cancer Chemother Pharmacol. 1998, 41 (5), 361-369; [DOI:10.1007/s002800050752] [PMID]

Cilenti, G.; Tozzi, L.; Suriano, A.; Tartarone, A.; Lelli, G., Phase I-II study of oral idarubicin, tegafur and levo-folinate in patients with pretreated advanced breast cancer. J Chemother. 2013.

Iqbal N, Iqbal N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol Biol Int. 2014; 2014: 852748 [DOI:10.1155/2014/852748] [PMID] [PMCID]

Berens ME, Saito T, Welander CE, Modest EJ. Antitumor activity of new anthracycline analogues in combination with interferon alfa. Cancer Chemother Pharmacol.1987; 19(4): 301-306. [DOI:10.1007/BF00261477] [PMID]

Gewirtz DA, Randolph JK, Chawla J, Orr MS, Fornari FA. Induction of DNA damage, inhibition of DNA synthesis and suppression of c-myc expression by the anthracycline analog, idarubicin (4-demethoxy-daunorubicin) in the MCF-7 breast tumor cell line. Cancer Chemother Pharmacol. 1998; 41(5): 361-369. [DOI:10.1007/s002800050752] [PMID]

Cilenti G, Tozzi L, Suriano A, Tartarone A, Lelli G. Phase I-II study of oral idarubicin, tegafur and levo-folinate in patients with pretreated advanced breast cancer. J Chemother. 1999. 11(5): 402-406. [DOI:10.1179/joc.1999.11.5.402] [PMID]

Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY, et al. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol. 2010; 28(11): 1856. [DOI:10.1200/JCO.2009.25.4888] [PMID] [PMCID]

Stewart DJ, Grewaal D, Green RM, Verma S, Maroun JA, Redmond D,et al. Bioavailability and pharmacology of oral idarubicin. Cancer Chemother Pharmacol. 1991; 27(4): 308-314. [DOI:10.1007/BF00685117] [PMID]

Cersosimo R. Idarubicin: an anthracycline antineoplastic agent. Clin Pharm. 1992;11(2):152-167.

Kara HES. Redox mechanism of anticancer drug idarubicin and in-situ evaluation of interaction with DNA using an electrochemical biosensor. Bioelectrochemistry. 2014; 99: 17-23. [DOI:10.1016/j.bioelechem.2014.06.002] [PMID]

Ristic B, Bosnjak M, Arsikin K, Mircic A, Suzin-Zivkovic V, Bogdanovic A, et al. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells. Exp Cell Resh. 2014; 326(1): 90-102. [DOI:10.1016/j.yexcr.2014.05.021] [PMID]

Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G,et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med.2012; 366(15):1382-1392. [DOI:10.1056/NEJMoa1105535] [PMID]

Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014; 740:364-378. [DOI:10.1016/j.ejphar.2014.07.025] [PMID] [PMCID]

Berman E. A review of idarubicin in acute leukemia. Oncology (Williston Park, NY). 1993;7(10):91-8.

Sandström M, Lindskog K, Velikyan I, Wennborg A, Feldwisch J, Sandberg D,et al. Biodistribution and radiation dosimetry of the anti-HER2 affibody molecule 68Ga-ABY-025 in breast cancer patients. J Nucl Med. 2016; 57(6): 867-871. [DOI:10.2967/jnumed.115.169342] [PMID]

Trousil S, Hoppmann S, Nguyen QD, Kaliszczak M, Tomasi G, Iveson P,et al. Positron emission tomography imaging with 18F-labeled ZHER2: 2891 affibody for detection of HER2 expression and pharmacodynamic response to HER2-modulating therapies. Clin Cancer Res. 2014; 20(6): 1632-1643. [DOI:10.1158/1078-0432.CCR-13-2421] [PMID]

Ekerljung L, Lindborg M, Gedda L, Frejd FY, Carlsson J, Lennartsson J. Dimeric HER2-specific affibody molecules inhibit proliferation of the SKBR-3 breast cancer cell line. Biochem Biophys Res Commun. 2008; 377(2): 489-494. [DOI:10.1016/j.bbrc.2008.10.027] [PMID]

Payne G. Progress in immunoconjugate cancer therapeutics. Cancer Cell. 2003; 3(3): 207-212. [DOI:10.1016/S1535-6108(03)00057-6]

Rönnmark J, Kampf C, Asplund A, Höidén-Guthenberg I, Wester K, Pontén F, et al. Affibody-β-galactosidase immunoconjugates produced as soluble fusion proteins in the Escherichia coli cytosol. J Immunol Methods.2003; 281(1-2): 149-160. [DOI:10.1016/j.jim.2003.06.001] [PMID]

Engfeldt T, Orlova A, Tran T, Bruskin A, Widström C, Karlström AE, et al. Imaging of HER2-expressing tumours using a synthetic Affibody molecule containing the 99m Tc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence. Eur J Nucl Med Mol Imaging. 2007; 34(5): 722-733. [DOI:10.1007/s00259-006-0266-4] [PMID]

Alavizadeh SH, Akhtari J, Badiee A, Golmohammadzadeh S, Jaafari MR. Improved therapeutic activity of HER2 Affibody-targeted cisplatin liposomes in HER2-expressing breast tumor models. Expert Opin Drug Deliv. 2016; 13(3): 325-336. [DOI:10.1517/17425247.2016.1121987] [PMID]